Spaces:
Configuration error
Configuration error
| import math | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| from einops import rearrange | |
| from peft import LoraConfig, get_peft_model | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from transformers import PreTrainedModel, add_start_docstrings | |
| from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
| from transformers.models.clip.modeling_clip import CLIPMLP, CLIPAttention, CLIPTextEmbeddings, CLIPVisionEmbeddings, \ | |
| CLIPVisionModelWithProjection, CLIPTextModelWithProjection, _expand_mask, CLIPOutput, clip_loss | |
| from transformers.utils import add_start_docstrings_to_model_forward, replace_return_docstrings | |
| from .configuration_video import LanguageBindVideoConfig, CLIPVisionConfig, CLIPTextConfig | |
| class PatchDropout(nn.Module): | |
| """ | |
| https://arxiv.org/abs/2212.00794 | |
| """ | |
| def __init__(self, prob, exclude_first_token=True): | |
| super().__init__() | |
| assert 0 <= prob < 1. | |
| self.prob = prob | |
| self.exclude_first_token = exclude_first_token # exclude CLS token | |
| def forward(self, x, B, T): | |
| if not self.training or self.prob == 0.: | |
| return x | |
| if self.exclude_first_token: | |
| cls_tokens, x = x[:, :1], x[:, 1:] | |
| else: | |
| cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) | |
| batch = x.size()[0] | |
| num_tokens = x.size()[1] | |
| batch_indices = torch.arange(batch) | |
| batch_indices = batch_indices[..., None] | |
| keep_prob = 1 - self.prob | |
| num_patches_keep = max(1, int(num_tokens * keep_prob)) | |
| if T == 1: | |
| rand = torch.randn(batch, num_tokens) | |
| patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices | |
| else: | |
| rand = torch.randn(B, num_tokens) | |
| patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices | |
| patch_indices_keep = patch_indices_keep.unsqueeze(1).repeat(1, T, 1) | |
| patch_indices_keep = rearrange(patch_indices_keep, 'b t n -> (b t) n') | |
| x = x[batch_indices, patch_indices_keep] | |
| if self.exclude_first_token: | |
| x = torch.cat((cls_tokens, x), dim=1) | |
| return x | |
| class CLIPEncoderLayer(nn.Module): | |
| def __init__(self, config: LanguageBindVideoConfig): | |
| super().__init__() | |
| self.embed_dim = config.hidden_size | |
| self.self_attn = CLIPAttention(config) | |
| self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| self.mlp = CLIPMLP(config) | |
| self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| self.add_time_attn = config.add_time_attn | |
| if self.add_time_attn: | |
| self.t = config.num_frames | |
| self.temporal_embedding = nn.Parameter(torch.zeros(1, config.num_frames, config.hidden_size)) | |
| nn.init.normal_(self.temporal_embedding, std=config.hidden_size ** -0.5) | |
| self.embed_dim = config.hidden_size | |
| self.temporal_attn = CLIPAttention(config) | |
| self.temporal_layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| # self.temporal_mlp = CLIPMLP(config) | |
| # self.temporal_layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| causal_attention_mask: torch.Tensor, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.FloatTensor]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| `(config.encoder_attention_heads,)`. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| if self.add_time_attn: | |
| bt, n, d = hidden_states.shape | |
| t = self.t | |
| # time embed | |
| if t != 1: | |
| n = hidden_states.shape[1] | |
| hidden_states = rearrange(hidden_states, '(b t) n d -> (b n) t d', t=t) | |
| hidden_states = hidden_states + self.temporal_embedding[:, :t, :] | |
| hidden_states = rearrange(hidden_states, '(b n) t d -> (b t) n d', n=n) | |
| # time attn | |
| residual = hidden_states | |
| hidden_states = rearrange(hidden_states, '(b t) n d -> (b n) t d', t=t) | |
| # hidden_states = self.layer_norm1(hidden_states) # share layernorm | |
| hidden_states = self.temporal_layer_norm1(hidden_states) | |
| hidden_states, attn_weights = self.temporal_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| causal_attention_mask=causal_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = residual + rearrange(hidden_states, '(b n) t d -> (b t) n d', n=n) | |
| # residual = hidden_states | |
| # hidden_states = rearrange(hidden_states, '(b t) n d -> (b n) t d', t=t) | |
| # # hidden_states = self.layer_norm2(hidden_states) # share layernorm | |
| # hidden_states = self.temporal_layer_norm2(hidden_states) | |
| # hidden_states = self.temporal_mlp(hidden_states) | |
| # hidden_states = residual + rearrange(hidden_states, '(b n) t d -> (b t) n d', n=n) | |
| # spatial attn | |
| residual = hidden_states | |
| hidden_states = self.layer_norm1(hidden_states) | |
| hidden_states, attn_weights = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| causal_attention_mask=causal_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = residual + hidden_states | |
| residual = hidden_states | |
| hidden_states = self.layer_norm2(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| class CLIPPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = LanguageBindVideoConfig | |
| base_model_prefix = "clip" | |
| supports_gradient_checkpointing = True | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| factor = self.config.initializer_factor | |
| if isinstance(module, CLIPTextEmbeddings): | |
| module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
| module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
| elif isinstance(module, CLIPVisionEmbeddings): | |
| factor = self.config.initializer_factor | |
| nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) | |
| nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) | |
| nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) | |
| elif isinstance(module, CLIPAttention): | |
| factor = self.config.initializer_factor | |
| in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor | |
| out_proj_std = (module.embed_dim**-0.5) * factor | |
| nn.init.normal_(module.q_proj.weight, std=in_proj_std) | |
| nn.init.normal_(module.k_proj.weight, std=in_proj_std) | |
| nn.init.normal_(module.v_proj.weight, std=in_proj_std) | |
| nn.init.normal_(module.out_proj.weight, std=out_proj_std) | |
| elif isinstance(module, CLIPMLP): | |
| factor = self.config.initializer_factor | |
| in_proj_std = ( | |
| (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor | |
| ) | |
| fc_std = (2 * module.config.hidden_size) ** -0.5 * factor | |
| nn.init.normal_(module.fc1.weight, std=fc_std) | |
| nn.init.normal_(module.fc2.weight, std=in_proj_std) | |
| elif isinstance(module, LanguageBindVideo): | |
| nn.init.normal_( | |
| module.text_projection.weight, | |
| std=module.text_embed_dim**-0.5 * self.config.initializer_factor, | |
| ) | |
| nn.init.normal_( | |
| module.visual_projection.weight, | |
| std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, | |
| ) | |
| elif isinstance(module, CLIPVisionModelWithProjection): | |
| nn.init.normal_( | |
| module.visual_projection.weight, | |
| std=self.config.hidden_size**-0.5 * self.config.initializer_factor, | |
| ) | |
| elif isinstance(module, CLIPTextModelWithProjection): | |
| nn.init.normal_( | |
| module.text_projection.weight, | |
| std=self.config.hidden_size**-0.5 * self.config.initializer_factor, | |
| ) | |
| if isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| if isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, CLIPEncoder): | |
| module.gradient_checkpointing = value | |
| CLIP_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`CLIPConfig`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| CLIP_TEXT_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| CLIP_VISION_INPUTS_DOCSTRING = r""" | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
| [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| CLIP_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
| [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
| return_loss (`bool`, *optional*): | |
| Whether or not to return the contrastive loss. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class CLIPEncoder(nn.Module): | |
| """ | |
| Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
| [`CLIPEncoderLayer`]. | |
| Args: | |
| config: CLIPConfig | |
| """ | |
| def __init__(self, config: LanguageBindVideoConfig): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| inputs_embeds, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| causal_attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Args: | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Causal mask for the text model. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| hidden_states = inputs_embeds | |
| for idx, encoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(encoder_layer), | |
| hidden_states, | |
| attention_mask, | |
| causal_attention_mask, | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask, | |
| causal_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
| ) | |
| # Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
| def _make_causal_mask( | |
| input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | |
| ): | |
| """ | |
| Make causal mask used for bi-directional self-attention. | |
| """ | |
| bsz, tgt_len = input_ids_shape | |
| mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
| mask_cond = torch.arange(mask.size(-1), device=device) | |
| mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
| mask = mask.to(dtype) | |
| if past_key_values_length > 0: | |
| mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
| return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
| class CLIPTextTransformer(nn.Module): | |
| def __init__(self, config: CLIPTextConfig): | |
| super().__init__() | |
| self.config = config | |
| embed_dim = config.hidden_size | |
| self.embeddings = CLIPTextEmbeddings(config) | |
| self.encoder = CLIPEncoder(config) | |
| self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is None: | |
| raise ValueError("You have to specify input_ids") | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) | |
| # CLIP's text model uses causal mask, prepare it here. | |
| # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 | |
| causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device) | |
| # expand attention_mask | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| attention_mask = _expand_mask(attention_mask, hidden_states.dtype) | |
| encoder_outputs = self.encoder( | |
| inputs_embeds=hidden_states, | |
| attention_mask=attention_mask, | |
| causal_attention_mask=causal_attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| last_hidden_state = encoder_outputs[0] | |
| last_hidden_state = self.final_layer_norm(last_hidden_state) | |
| # text_embeds.shape = [batch_size, sequence_length, transformer.width] | |
| # take features from the eot embedding (eot_token is the highest number in each sequence) | |
| # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 | |
| pooled_output = last_hidden_state[ | |
| torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), | |
| input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), | |
| ] | |
| if not return_dict: | |
| return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=last_hidden_state, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class CLIPTextModel(CLIPPreTrainedModel): | |
| config_class = CLIPTextConfig | |
| _no_split_modules = ["CLIPEncoderLayer"] | |
| def __init__(self, config: CLIPTextConfig): | |
| super().__init__(config) | |
| self.text_model = CLIPTextTransformer(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.text_model.embeddings.token_embedding | |
| def set_input_embeddings(self, value): | |
| self.text_model.embeddings.token_embedding = value | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoTokenizer, CLIPTextModel | |
| >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> last_hidden_state = outputs.last_hidden_state | |
| >>> pooled_output = outputs.pooler_output # pooled (EOS token) states | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| return self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| class CLIPVisionTransformer(nn.Module): | |
| def __init__(self, config: CLIPVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| embed_dim = config.hidden_size | |
| self.embeddings = CLIPVisionEmbeddings(config) | |
| self.patch_dropout = PatchDropout(config.force_patch_dropout) | |
| self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| self.encoder = CLIPEncoder(config) | |
| self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # print('input video raw shape', pixel_values.shape) | |
| if pixel_values is None: | |
| raise ValueError("You have to specify pixel_values") | |
| ###################################### | |
| if len(pixel_values.shape) == 7: | |
| b_new, pair_new, T, bs_new, channel_new, h_new, w_new = pixel_values.shape | |
| # print(pixel_values.shape) | |
| B = b_new * pair_new * bs_new | |
| pixel_values = pixel_values.reshape(B*T, channel_new, h_new, w_new) | |
| elif len(pixel_values.shape) == 5: | |
| B, _, T, _, _ = pixel_values.shape | |
| # print(pixel_values.shape) | |
| pixel_values = rearrange(pixel_values, 'b c t h w -> (b t) c h w') | |
| else: | |
| # print(pixel_values.shape) | |
| B, _, _, _ = pixel_values.shape | |
| T = 1 | |
| ########################### | |
| hidden_states = self.embeddings(pixel_values) | |
| # print(B, T) | |
| hidden_states = self.patch_dropout(hidden_states, B, T) ############################################## | |
| hidden_states = self.pre_layrnorm(hidden_states) | |
| encoder_outputs = self.encoder( | |
| inputs_embeds=hidden_states, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| last_hidden_state = encoder_outputs[0] | |
| # print('video encoder last_hidden_state', last_hidden_state.shape) | |
| pooled_output = last_hidden_state[:, 0, :] | |
| pooled_output = self.post_layernorm(pooled_output) | |
| pooled_output = pooled_output.reshape(B, T, -1).mean(1) ################################ | |
| ################################# | |
| encoder_outputs.hidden_states = [rearrange(i, '(b t) n c -> b t n c', b=B) for i in encoder_outputs.hidden_states] | |
| if not return_dict: | |
| return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=last_hidden_state, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class CLIPVisionModel(CLIPPreTrainedModel): | |
| config_class = CLIPVisionConfig | |
| main_input_name = "pixel_values" | |
| def __init__(self, config: CLIPVisionConfig): | |
| super().__init__(config) | |
| self.vision_model = CLIPVisionTransformer(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.vision_model.embeddings.patch_embedding | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, CLIPVisionModel | |
| >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> last_hidden_state = outputs.last_hidden_state | |
| >>> pooled_output = outputs.pooler_output # pooled CLS states | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| return self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| class LanguageBindVideo(CLIPPreTrainedModel): | |
| config_class = LanguageBindVideoConfig | |
| def __init__(self, config: LanguageBindVideoConfig): | |
| super().__init__(config) | |
| if not isinstance(config.text_config, CLIPTextConfig): | |
| raise ValueError( | |
| "config.text_config is expected to be of type CLIPTextConfig but is of type" | |
| f" {type(config.text_config)}." | |
| ) | |
| if not isinstance(config.vision_config, CLIPVisionConfig): | |
| raise ValueError( | |
| "config.vision_config is expected to be of type CLIPVisionConfig but is of type" | |
| f" {type(config.vision_config)}." | |
| ) | |
| text_config = config.text_config | |
| vision_config = config.vision_config | |
| self.add_time_attn = vision_config.add_time_attn | |
| self.lora_r = vision_config.lora_r | |
| self.lora_alpha = vision_config.lora_alpha | |
| self.lora_dropout = vision_config.lora_dropout | |
| self.projection_dim = config.projection_dim | |
| self.text_embed_dim = text_config.hidden_size | |
| self.vision_embed_dim = vision_config.hidden_size | |
| self.text_model = CLIPTextTransformer(text_config) | |
| self.vision_model = CLIPVisionTransformer(vision_config) | |
| self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) | |
| self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) | |
| self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| # self.convert_to_lora() ############################################ | |
| # self.resize_pos(self.vision_model.embeddings, vision_config) | |
| def convert_to_lora(self): | |
| if self.lora_r == 0: | |
| return | |
| if self.add_time_attn: | |
| target_modules = ["temporal_attn.k_proj", "temporal_attn.v_proj", | |
| "temporal_attn.q_proj", "temporal_attn.out_proj", | |
| "temporal_mlp.fc1", "temporal_mlp.fc2"] | |
| else: | |
| target_modules = ["k_proj", "v_proj", "q_proj", "out_proj"] | |
| config = LoraConfig( | |
| r=self.lora_r, # 16 | |
| lora_alpha=self.lora_alpha, # 16 | |
| target_modules=target_modules, # self_attn.out_proj | |
| lora_dropout=self.lora_dropout, # 0.1 | |
| bias="none", | |
| modules_to_save=[], | |
| ) | |
| self.vision_model.encoder.is_gradient_checkpointing = False | |
| self.vision_model.encoder = get_peft_model(self.vision_model.encoder, config) | |
| def resize_pos(self, m, vision_config): | |
| # convert embedding | |
| if vision_config.num_mel_bins!=0 and vision_config.target_length!=0: | |
| m.image_size = [vision_config.num_mel_bins, vision_config.target_length] | |
| m.config.image_size = [m.image_size, m.image_size] if isinstance(m.image_size, int) else m.image_size | |
| # pos resize | |
| old_pos_embed_state_dict = m.position_embedding.state_dict() | |
| old_pos_embed = old_pos_embed_state_dict['weight'] | |
| dtype = old_pos_embed.dtype | |
| grid_size = [m.config.image_size[0] // m.patch_size, m.config.image_size[1] // m.patch_size] | |
| extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) | |
| new_seq_len = grid_size[0] * grid_size[1] + extra_tokens | |
| if new_seq_len == old_pos_embed.shape[0]: | |
| # m.to(args.device) | |
| return | |
| m.num_patches = grid_size[0] * grid_size[1] | |
| m.num_positions = m.num_patches + 1 | |
| m.register_buffer("position_ids", torch.arange(m.num_positions).expand((1, -1))) | |
| new_position_embedding = nn.Embedding(m.num_positions, m.embed_dim) | |
| if extra_tokens: | |
| pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] | |
| else: | |
| pos_emb_tok, pos_emb_img = None, old_pos_embed | |
| old_grid_size = [int(math.sqrt(len(pos_emb_img)))] * 2 | |
| # if is_master(args): | |
| # logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) | |
| pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) | |
| pos_emb_img = F.interpolate( | |
| pos_emb_img, | |
| size=grid_size, | |
| mode='bicubic', | |
| antialias=True, | |
| align_corners=False, | |
| ) | |
| pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] | |
| if pos_emb_tok is not None: | |
| new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) | |
| else: | |
| new_pos_embed = pos_emb_img | |
| old_pos_embed_state_dict['weight'] = new_pos_embed.to(dtype) | |
| m.position_embedding = new_position_embedding | |
| m.position_embedding.load_state_dict(old_pos_embed_state_dict) | |
| # m.to(args.device) | |
| def get_text_features( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> torch.FloatTensor: | |
| r""" | |
| Returns: | |
| text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by | |
| applying the projection layer to the pooled output of [`CLIPTextModel`]. | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoTokenizer, CLIPModel | |
| >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
| >>> text_features = model.get_text_features(**inputs) | |
| ```""" | |
| # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| text_outputs = self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = text_outputs[1] | |
| text_features = self.text_projection(pooled_output) | |
| return text_features | |
| def get_image_features( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> torch.FloatTensor: | |
| r""" | |
| Returns: | |
| image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by | |
| applying the projection layer to the pooled output of [`CLIPVisionModel`]. | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, CLIPModel | |
| >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> image_features = model.get_image_features(**inputs) | |
| ```""" | |
| # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = vision_outputs[1] # pooled_output | |
| image_features = self.visual_projection(pooled_output) | |
| return image_features | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| return_loss: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CLIPOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, CLIPModel | |
| >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor( | |
| ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True | |
| ... ) | |
| >>> outputs = model(**inputs) | |
| >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score | |
| >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities | |
| ```""" | |
| # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| text_outputs = self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| image_embeds = vision_outputs[1] | |
| image_embeds = self.visual_projection(image_embeds) | |
| text_embeds = text_outputs[1] | |
| text_embeds = self.text_projection(text_embeds) | |
| # normalized features | |
| image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) | |
| text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) | |
| # cosine similarity as logits | |
| logit_scale = self.logit_scale.exp() | |
| logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale | |
| logits_per_image = logits_per_text.t() | |
| loss = None | |
| if return_loss: | |
| loss = clip_loss(logits_per_text) | |
| if not return_dict: | |
| output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) | |
| return ((loss,) + output) if loss is not None else output | |
| return CLIPOutput( | |
| loss=loss, | |
| logits_per_image=logits_per_image, | |
| logits_per_text=logits_per_text, | |
| text_embeds=text_embeds, | |
| image_embeds=image_embeds, | |
| text_model_output=text_outputs, | |
| vision_model_output=vision_outputs, | |
| ) |