Spaces:
Configuration error
Configuration error
| import copy | |
| import os | |
| from typing import Union | |
| from transformers import PretrainedConfig | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| class CLIPTextConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP | |
| text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration | |
| with the defaults will yield a similar configuration to that of the text encoder of the CLIP | |
| [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 49408): | |
| Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by | |
| the `inputs_ids` passed when calling [`CLIPModel`]. | |
| hidden_size (`int`, *optional*, defaults to 512): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| intermediate_size (`int`, *optional*, defaults to 2048): | |
| Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 8): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| max_position_embeddings (`int`, *optional*, defaults to 77): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
| The epsilon used by the layer normalization layers. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| initializer_factor (`float`, *optional*, defaults to 1): | |
| A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
| testing). | |
| Example: | |
| ```python | |
| >>> from transformers import CLIPTextConfig, CLIPTextModel | |
| >>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration | |
| >>> configuration = CLIPTextConfig() | |
| >>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration | |
| >>> model = CLIPTextModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "clip_text_model" | |
| def __init__( | |
| self, | |
| vocab_size=49408, | |
| hidden_size=512, | |
| intermediate_size=2048, | |
| projection_dim=512, | |
| num_hidden_layers=12, | |
| num_attention_heads=8, | |
| max_position_embeddings=77, | |
| hidden_act="quick_gelu", | |
| layer_norm_eps=1e-5, | |
| attention_dropout=0.0, | |
| initializer_range=0.02, | |
| initializer_factor=1.0, | |
| # This differs from `CLIPTokenizer`'s default and from openai/clip | |
| # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538 | |
| pad_token_id=1, | |
| bos_token_id=49406, | |
| eos_token_id=49407, | |
| **kwargs, | |
| ): | |
| super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.projection_dim = projection_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.max_position_embeddings = max_position_embeddings | |
| self.layer_norm_eps = layer_norm_eps | |
| self.hidden_act = hidden_act | |
| self.initializer_range = initializer_range | |
| self.initializer_factor = initializer_factor | |
| self.attention_dropout = attention_dropout | |
| self.add_time_attn = False ###################################### | |
| def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
| cls._set_token_in_kwargs(kwargs) | |
| config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
| # get the text config dict if we are loading from CLIPConfig | |
| if config_dict.get("model_type") == "clip": | |
| config_dict = config_dict["text_config"] | |
| if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class CLIPVisionConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a | |
| CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP | |
| [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| intermediate_size (`int`, *optional*, defaults to 3072): | |
| Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| image_size (`int`, *optional*, defaults to 224): | |
| The size (resolution) of each image. | |
| patch_size (`int`, *optional*, defaults to 32): | |
| The size (resolution) of each patch. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
| The epsilon used by the layer normalization layers. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| initializer_factor (`float`, *optional*, defaults to 1): | |
| A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
| testing). | |
| Example: | |
| ```python | |
| >>> from transformers import CLIPVisionConfig, CLIPVisionModel | |
| >>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration | |
| >>> configuration = CLIPVisionConfig() | |
| >>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration | |
| >>> model = CLIPVisionModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "clip_vision_model" | |
| def __init__( | |
| self, | |
| hidden_size=768, | |
| intermediate_size=3072, | |
| projection_dim=512, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| num_channels=3, | |
| image_size=224, | |
| patch_size=32, | |
| hidden_act="quick_gelu", | |
| layer_norm_eps=1e-5, | |
| attention_dropout=0.0, | |
| initializer_range=0.02, | |
| initializer_factor=1.0, | |
| add_time_attn=False, ################################ | |
| num_frames=1, ################################ | |
| force_patch_dropout=0.0, ################################ | |
| lora_r=2, ################################ | |
| lora_alpha=16, ################################ | |
| lora_dropout=0.0, ################################ | |
| num_mel_bins=0.0, ################################ | |
| target_length=0.0, ################################ | |
| video_decode_backend='decord', ######################### | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.projection_dim = projection_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.num_channels = num_channels | |
| self.patch_size = patch_size | |
| self.image_size = image_size | |
| self.initializer_range = initializer_range | |
| self.initializer_factor = initializer_factor | |
| self.attention_dropout = attention_dropout | |
| self.layer_norm_eps = layer_norm_eps | |
| self.hidden_act = hidden_act | |
| self.add_time_attn = add_time_attn ################ | |
| self.num_frames = num_frames ################ | |
| self.force_patch_dropout = force_patch_dropout ################ | |
| self.lora_r = lora_r ################ | |
| self.lora_alpha = lora_alpha ################ | |
| self.lora_dropout = lora_dropout ################ | |
| self.num_mel_bins = num_mel_bins ################ | |
| self.target_length = target_length ################ | |
| self.video_decode_backend = video_decode_backend ################ | |
| def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
| cls._set_token_in_kwargs(kwargs) | |
| config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
| # get the vision config dict if we are loading from CLIPConfig | |
| if config_dict.get("model_type") == "clip": | |
| config_dict = config_dict["vision_config"] | |
| if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class LanguageBindVideoConfig(PretrainedConfig): | |
| r""" | |
| [`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate | |
| a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating | |
| a configuration with the defaults will yield a similar configuration to that of the CLIP | |
| [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| text_config (`dict`, *optional*): | |
| Dictionary of configuration options used to initialize [`CLIPTextConfig`]. | |
| vision_config (`dict`, *optional*): | |
| Dictionary of configuration options used to initialize [`CLIPVisionConfig`]. | |
| projection_dim (`int`, *optional*, defaults to 512): | |
| Dimentionality of text and vision projection layers. | |
| logit_scale_init_value (`float`, *optional*, defaults to 2.6592): | |
| The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation. | |
| kwargs (*optional*): | |
| Dictionary of keyword arguments. | |
| Example: | |
| ```python | |
| >>> from transformers import CLIPConfig, CLIPModel | |
| >>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration | |
| >>> configuration = CLIPConfig() | |
| >>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration | |
| >>> model = CLIPModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| >>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig | |
| >>> from transformers import CLIPTextConfig, CLIPVisionConfig | |
| >>> # Initializing a CLIPText and CLIPVision configuration | |
| >>> config_text = CLIPTextConfig() | |
| >>> config_vision = CLIPVisionConfig() | |
| >>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision) | |
| ```""" | |
| model_type = "LanguageBindVideo" | |
| is_composition = True | |
| def __init__( | |
| self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs | |
| ): | |
| # If `_config_dict` exist, we use them for the backward compatibility. | |
| # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot | |
| # of confusion!). | |
| text_config_dict = kwargs.pop("text_config_dict", None) | |
| vision_config_dict = kwargs.pop("vision_config_dict", None) | |
| super().__init__(**kwargs) | |
| # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in | |
| # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most | |
| # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. | |
| if text_config_dict is not None: | |
| if text_config is None: | |
| text_config = {} | |
| # This is the complete result when using `text_config_dict`. | |
| _text_config_dict = CLIPTextConfig(**text_config_dict).to_dict() | |
| # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. | |
| for key, value in _text_config_dict.items(): | |
| if key in text_config and value != text_config[key] and key not in ["transformers_version"]: | |
| # If specified in `text_config_dict` | |
| if key in text_config_dict: | |
| message = ( | |
| f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " | |
| f'The value `text_config_dict["{key}"]` will be used instead.' | |
| ) | |
| # If inferred from default argument values (just to be super careful) | |
| else: | |
| message = ( | |
| f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The " | |
| f'value `text_config["{key}"]` will be overriden.' | |
| ) | |
| logger.warning(message) | |
| # Update all values in `text_config` with the ones in `_text_config_dict`. | |
| text_config.update(_text_config_dict) | |
| if vision_config_dict is not None: | |
| if vision_config is None: | |
| vision_config = {} | |
| # This is the complete result when using `vision_config_dict`. | |
| _vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict() | |
| # convert keys to string instead of integer | |
| if "id2label" in _vision_config_dict: | |
| _vision_config_dict["id2label"] = { | |
| str(key): value for key, value in _vision_config_dict["id2label"].items() | |
| } | |
| # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. | |
| for key, value in _vision_config_dict.items(): | |
| if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: | |
| # If specified in `vision_config_dict` | |
| if key in vision_config_dict: | |
| message = ( | |
| f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " | |
| f'values. The value `vision_config_dict["{key}"]` will be used instead.' | |
| ) | |
| # If inferred from default argument values (just to be super careful) | |
| else: | |
| message = ( | |
| f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. " | |
| f'The value `vision_config["{key}"]` will be overriden.' | |
| ) | |
| logger.warning(message) | |
| # Update all values in `vision_config` with the ones in `_vision_config_dict`. | |
| vision_config.update(_vision_config_dict) | |
| if text_config is None: | |
| text_config = {} | |
| logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.") | |
| if vision_config is None: | |
| vision_config = {} | |
| logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.") | |
| self.text_config = CLIPTextConfig(**text_config) | |
| self.vision_config = CLIPVisionConfig(**vision_config) | |
| self.projection_dim = projection_dim | |
| self.logit_scale_init_value = logit_scale_init_value | |
| self.initializer_factor = 1.0 | |
| def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs): | |
| r""" | |
| Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model | |
| configuration. | |
| Returns: | |
| [`CLIPConfig`]: An instance of a configuration object | |
| """ | |
| return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) | |
| def to_dict(self): | |
| """ | |
| Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
| Returns: | |
| `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
| """ | |
| output = copy.deepcopy(self.__dict__) | |
| output["text_config"] = self.text_config.to_dict() | |
| output["vision_config"] = self.vision_config.to_dict() | |
| output["model_type"] = self.__class__.model_type | |
| return output | |