Alex Jude
KlaudiaTH
commited on
New leaderboard design (#19)
Browse files* MT-BENCH: Model type is now fixed at "chat" for MT-BENCH. Pretrained models are not shown nor can be selected.
* MT-BENCH: Language selection in MT-BENCH tab is limited to EN, DE, ES, FR, IT
* MT-BENCH: Don't select all 22 Languages when "Select all languages" button is pressed in in Mt-Bench tab.
* New Leaderboard Design: New design skeleton
* New Leaderboard Design: Removed unnecessary updates
* New Leaderboard Design: Introduced Zero-Shot tab instead of radio buttons
---------
Co-authored-by: KlaudiaTH <[email protected]>
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
import core as core
|
| 4 |
-
from style import CSS, LANG_SYMBOLS, T_SYMBOLS, TITLE
|
| 5 |
|
| 6 |
demo = gr.Blocks(css=CSS)
|
| 7 |
with demo:
|
|
@@ -14,8 +14,12 @@ with demo:
|
|
| 14 |
|
| 15 |
selected_tab = gr.State(value=0)
|
| 16 |
|
| 17 |
-
with gr.
|
| 18 |
-
with gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
with gr.Column():
|
| 20 |
with gr.Row():
|
| 21 |
search_bar = gr.Textbox(
|
|
@@ -24,7 +28,6 @@ with demo:
|
|
| 24 |
show_label=True,
|
| 25 |
elem_id="search-bar",
|
| 26 |
)
|
| 27 |
-
|
| 28 |
model_types = gr.CheckboxGroup(
|
| 29 |
label="Select model type",
|
| 30 |
choices=[
|
|
@@ -36,6 +39,7 @@ with demo:
|
|
| 36 |
],
|
| 37 |
value=list(T_SYMBOLS.values()),
|
| 38 |
)
|
|
|
|
| 39 |
with gr.Row():
|
| 40 |
langs_bar = gr.CheckboxGroup(
|
| 41 |
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.languages_list],
|
|
@@ -52,125 +56,318 @@ with demo:
|
|
| 52 |
size="sm",
|
| 53 |
scale=1,
|
| 54 |
)
|
| 55 |
-
select = gr.Button(
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
with gr.Row():
|
| 76 |
-
|
| 77 |
-
choices=[],
|
| 78 |
-
value=
|
| 79 |
-
label="Select
|
| 80 |
elem_id="column-select",
|
| 81 |
interactive=True,
|
| 82 |
-
scale=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
scale=29,
|
| 89 |
)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
id=1,
|
| 99 |
-
) as misc:
|
| 100 |
-
leaderboard_table_misc = gr.Dataframe()
|
| 101 |
-
with gr.TabItem(
|
| 102 |
-
"๐ LLM MT-Bench benchmark",
|
| 103 |
-
elem_id="llm-benchmark-tab-table-mtbench",
|
| 104 |
-
id=2,
|
| 105 |
-
) as mtbench:
|
| 106 |
-
leaderboard_table_mtbench = gr.Dataframe()
|
| 107 |
-
|
| 108 |
-
demo.load(
|
| 109 |
-
core.update_task_groups_and_fewshot,
|
| 110 |
-
[gr.State(value=0), model_types, langs_bar,fewshot],
|
| 111 |
-
[shown_tasks, fewshot, selected_tab, model_types, langs_bar],
|
| 112 |
-
)
|
| 113 |
-
fewshot.change(
|
| 114 |
-
core.update_task_groups_and_fewshot,
|
| 115 |
-
[selected_tab, model_types, langs_bar, fewshot],
|
| 116 |
-
[shown_tasks, fewshot, selected_tab, model_types, langs_bar],
|
| 117 |
-
)
|
| 118 |
-
acc.select(
|
| 119 |
-
core.update_task_groups_and_fewshot,
|
| 120 |
-
inputs=[gr.State(value=0), model_types, langs_bar, fewshot],
|
| 121 |
-
outputs=[shown_tasks, fewshot, selected_tab, model_types, langs_bar],
|
| 122 |
-
)
|
| 123 |
-
misc.select(
|
| 124 |
-
core.update_task_groups_and_fewshot,
|
| 125 |
-
inputs=[gr.State(value=1), model_types, langs_bar, fewshot],
|
| 126 |
-
outputs=[shown_tasks, fewshot, selected_tab, model_types, langs_bar],
|
| 127 |
-
)
|
| 128 |
-
mtbench.select(
|
| 129 |
-
core.update_task_groups_and_fewshot,
|
| 130 |
-
inputs=[gr.State(value=2), model_types, langs_bar, fewshot],
|
| 131 |
-
outputs=[shown_tasks, fewshot, selected_tab, model_types, langs_bar],
|
| 132 |
-
)
|
| 133 |
for comp, fn in [
|
| 134 |
(search_bar, "submit"),
|
| 135 |
(langs_bar, "change"),
|
| 136 |
(shown_tasks, "change"),
|
| 137 |
-
(fewshot, "change"),
|
| 138 |
(model_types, "change"),
|
| 139 |
]:
|
| 140 |
getattr(comp, fn)(
|
| 141 |
core.update_df,
|
| 142 |
-
[shown_tasks, search_bar, langs_bar, model_types,
|
| 143 |
leaderboard_table,
|
| 144 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
getattr(comp, fn)(
|
| 146 |
core.update_df,
|
| 147 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
leaderboard_table_misc,
|
| 149 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
getattr(comp, fn)(
|
| 151 |
core.update_df,
|
| 152 |
-
[
|
| 153 |
leaderboard_table_mtbench,
|
| 154 |
)
|
| 155 |
|
| 156 |
gr.Blocks.load(
|
| 157 |
block=demo,
|
| 158 |
fn=core.update_df,
|
| 159 |
-
inputs=[shown_tasks, search_bar, langs_bar, model_types,
|
| 160 |
outputs=leaderboard_table,
|
| 161 |
)
|
| 162 |
|
| 163 |
gr.Blocks.load(
|
| 164 |
block=demo,
|
| 165 |
fn=core.update_df,
|
| 166 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
outputs=leaderboard_table_misc,
|
| 168 |
)
|
| 169 |
|
| 170 |
gr.Blocks.load(
|
| 171 |
block=demo,
|
| 172 |
fn=core.update_df,
|
| 173 |
-
inputs=[
|
| 174 |
outputs=leaderboard_table_mtbench,
|
| 175 |
)
|
| 176 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
import core as core
|
| 4 |
+
from style import CSS, LANG_SYMBOLS, MT_BENCH_LANG_SYMBOLS, T_SYMBOLS, TITLE
|
| 5 |
|
| 6 |
demo = gr.Blocks(css=CSS)
|
| 7 |
with demo:
|
|
|
|
| 14 |
|
| 15 |
selected_tab = gr.State(value=0)
|
| 16 |
|
| 17 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 18 |
+
with gr.TabItem(
|
| 19 |
+
"๐
LLM accuracy benchmark",
|
| 20 |
+
elem_id="llm-benchmark-tab-table-acc",
|
| 21 |
+
id=0,
|
| 22 |
+
) as acc:
|
| 23 |
with gr.Column():
|
| 24 |
with gr.Row():
|
| 25 |
search_bar = gr.Textbox(
|
|
|
|
| 28 |
show_label=True,
|
| 29 |
elem_id="search-bar",
|
| 30 |
)
|
|
|
|
| 31 |
model_types = gr.CheckboxGroup(
|
| 32 |
label="Select model type",
|
| 33 |
choices=[
|
|
|
|
| 39 |
],
|
| 40 |
value=list(T_SYMBOLS.values()),
|
| 41 |
)
|
| 42 |
+
|
| 43 |
with gr.Row():
|
| 44 |
langs_bar = gr.CheckboxGroup(
|
| 45 |
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.languages_list],
|
|
|
|
| 56 |
size="sm",
|
| 57 |
scale=1,
|
| 58 |
)
|
| 59 |
+
select = gr.Button(
|
| 60 |
+
value="Select all languages",
|
| 61 |
+
size="sm",
|
| 62 |
+
scale=1,
|
| 63 |
+
)
|
| 64 |
+
select.click(
|
| 65 |
+
lambda: gr.CheckboxGroup(value=core.languages_list),
|
| 66 |
+
inputs=[],
|
| 67 |
+
outputs=langs_bar,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
with gr.Row():
|
| 71 |
+
shown_tasks = gr.CheckboxGroup(
|
| 72 |
+
choices=core.get_available_task_groups(core.get_selected_task_type(0), True),
|
| 73 |
+
value=core.get_available_task_groups(core.get_selected_task_type(0), True),
|
| 74 |
+
label="Select tasks to show",
|
| 75 |
+
elem_id="column-select",
|
| 76 |
+
interactive=True,
|
| 77 |
+
scale=50,
|
| 78 |
+
)
|
| 79 |
+
clear = gr.ClearButton(
|
| 80 |
+
shown_tasks,
|
| 81 |
+
value="Deselect all tasks",
|
| 82 |
+
size="sm",
|
| 83 |
+
scale=1,
|
| 84 |
+
)
|
| 85 |
+
select = gr.Button(
|
| 86 |
+
value="Select all tasks",
|
| 87 |
+
size="sm",
|
| 88 |
+
scale=1,
|
| 89 |
+
)
|
| 90 |
+
select.click(
|
| 91 |
+
lambda: gr.CheckboxGroup(value=core.get_available_task_groups(core.get_selected_task_type(0), True)),
|
| 92 |
+
inputs=[],
|
| 93 |
+
outputs=shown_tasks,
|
| 94 |
+
)
|
| 95 |
+
leaderboard_table = gr.Dataframe()
|
| 96 |
+
|
| 97 |
+
with gr.TabItem(
|
| 98 |
+
"๐
LLM accuracy benchmark (Zero-Shot)",
|
| 99 |
+
elem_id="llm-benchmark-tab-table-acc-zeroshot",
|
| 100 |
+
id=3,
|
| 101 |
+
) as acc_zero_shot:
|
| 102 |
+
with gr.Column():
|
| 103 |
+
with gr.Row():
|
| 104 |
+
search_bar_zero_shot = gr.Textbox(
|
| 105 |
+
label="Search models",
|
| 106 |
+
placeholder=" ๐ Separate multiple queries with ';' and press ENTER...",
|
| 107 |
+
show_label=True,
|
| 108 |
+
elem_id="search-bar",
|
| 109 |
+
)
|
| 110 |
+
model_types_zero_shot = gr.CheckboxGroup(
|
| 111 |
+
label="Select model type",
|
| 112 |
+
choices=[
|
| 113 |
+
(
|
| 114 |
+
f"Pretrained {T_SYMBOLS['pretrained']}",
|
| 115 |
+
T_SYMBOLS["pretrained"],
|
| 116 |
+
),
|
| 117 |
+
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
|
| 118 |
+
],
|
| 119 |
+
value=list(T_SYMBOLS.values()),
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
with gr.Row():
|
| 123 |
+
langs_bar_zero_shot = gr.CheckboxGroup(
|
| 124 |
+
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.languages_list],
|
| 125 |
+
value=core.languages_list,
|
| 126 |
+
label="Select languages to average over",
|
| 127 |
+
elem_id="column-select",
|
| 128 |
+
interactive=True,
|
| 129 |
+
scale=6,
|
| 130 |
+
)
|
| 131 |
+
with gr.Column(scale=1):
|
| 132 |
+
clear_zero_shot = gr.ClearButton(
|
| 133 |
+
langs_bar_zero_shot,
|
| 134 |
+
value="Deselect all languages",
|
| 135 |
+
size="sm",
|
| 136 |
+
scale=1,
|
| 137 |
+
)
|
| 138 |
+
select_zero_shot = gr.Button(
|
| 139 |
+
value="Select all languages",
|
| 140 |
+
size="sm",
|
| 141 |
+
scale=1,
|
| 142 |
+
)
|
| 143 |
+
select_zero_shot.click(
|
| 144 |
+
lambda: gr.CheckboxGroup(value=core.languages_list),
|
| 145 |
+
inputs=[],
|
| 146 |
+
outputs=langs_bar_zero_shot,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
with gr.Row():
|
| 150 |
+
shown_tasks_zero_shot = gr.CheckboxGroup(
|
| 151 |
+
choices=core.get_available_task_groups(core.get_selected_task_type(3), False),
|
| 152 |
+
value=core.get_available_task_groups(core.get_selected_task_type(3), False),
|
| 153 |
+
label="Select tasks to show",
|
| 154 |
+
elem_id="column-select",
|
| 155 |
+
interactive=True,
|
| 156 |
+
scale=50,
|
| 157 |
+
)
|
| 158 |
+
clear_zero_shot = gr.ClearButton(
|
| 159 |
+
shown_tasks_zero_shot,
|
| 160 |
+
value="Deselect all tasks",
|
| 161 |
+
size="sm",
|
| 162 |
+
scale=1,
|
| 163 |
+
)
|
| 164 |
+
select_zero_shot = gr.Button(
|
| 165 |
+
value="Select all tasks",
|
| 166 |
+
size="sm",
|
| 167 |
+
scale=1,
|
| 168 |
+
)
|
| 169 |
+
select_zero_shot.click(
|
| 170 |
+
lambda: gr.CheckboxGroup(value=core.get_available_task_groups(core.get_selected_task_type(3), False)),
|
| 171 |
+
inputs=[],
|
| 172 |
+
outputs=shown_tasks_zero_shot,
|
| 173 |
+
)
|
| 174 |
+
leaderboard_table_zero_shot = gr.Dataframe()
|
| 175 |
+
|
| 176 |
+
with gr.TabItem(
|
| 177 |
+
"๐ LLM translation benchmark",
|
| 178 |
+
elem_id="llm-benchmark-tab-table-misc",
|
| 179 |
+
id=1,
|
| 180 |
+
) as misc:
|
| 181 |
+
with gr.Column():
|
| 182 |
+
with gr.Row():
|
| 183 |
+
search_bar_misc = gr.Textbox(
|
| 184 |
+
label="Search models",
|
| 185 |
+
placeholder=" ๐ Separate multiple queries with ';' and press ENTER...",
|
| 186 |
+
show_label=True,
|
| 187 |
+
elem_id="search-bar",
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
model_types_misc = gr.CheckboxGroup(
|
| 191 |
+
label="Select model type",
|
| 192 |
+
choices=[
|
| 193 |
+
(
|
| 194 |
+
f"Pretrained {T_SYMBOLS['pretrained']}",
|
| 195 |
+
T_SYMBOLS["pretrained"],
|
| 196 |
+
),
|
| 197 |
+
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
|
| 198 |
+
],
|
| 199 |
+
value=list(T_SYMBOLS.values()),
|
| 200 |
+
)
|
| 201 |
|
| 202 |
with gr.Row():
|
| 203 |
+
langs_bar_misc = gr.CheckboxGroup(
|
| 204 |
+
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.languages_list],
|
| 205 |
+
value=core.languages_list,
|
| 206 |
+
label="Select languages to average over",
|
| 207 |
elem_id="column-select",
|
| 208 |
interactive=True,
|
| 209 |
+
scale=6,
|
| 210 |
+
)
|
| 211 |
+
with gr.Column(scale=1):
|
| 212 |
+
clear_misc = gr.ClearButton(
|
| 213 |
+
langs_bar_misc,
|
| 214 |
+
value="Deselect all languages",
|
| 215 |
+
size="sm",
|
| 216 |
+
scale=1,
|
| 217 |
+
)
|
| 218 |
+
select_misc = gr.Button(
|
| 219 |
+
value="Select all languages",
|
| 220 |
+
size="sm",
|
| 221 |
+
scale=1,
|
| 222 |
+
)
|
| 223 |
+
select_misc.click(
|
| 224 |
+
lambda: gr.CheckboxGroup(value=core.languages_list),
|
| 225 |
+
inputs=[],
|
| 226 |
+
outputs=langs_bar_misc,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
with gr.Row():
|
| 230 |
+
shown_tasks_misc = gr.CheckboxGroup(
|
| 231 |
+
choices=core.get_available_task_groups(core.get_selected_task_type(1), False),
|
| 232 |
+
value=core.get_available_task_groups(core.get_selected_task_type(1), False),
|
| 233 |
+
label="Select tasks to show",
|
| 234 |
+
elem_id="column-select",
|
| 235 |
+
interactive=True,
|
| 236 |
+
scale=50,
|
| 237 |
+
)
|
| 238 |
+
clear_tasks_misc = gr.ClearButton(
|
| 239 |
+
shown_tasks_misc,
|
| 240 |
+
value="Deselect all tasks",
|
| 241 |
+
size="sm",
|
| 242 |
+
scale=1,
|
| 243 |
+
)
|
| 244 |
+
select_all_tasks_misc = gr.Button(
|
| 245 |
+
value="Select all tasks",
|
| 246 |
+
size="sm",
|
| 247 |
+
scale=1,
|
| 248 |
+
)
|
| 249 |
+
select_all_tasks_misc.click(
|
| 250 |
+
lambda: gr.CheckboxGroup(value=core.get_available_task_groups(core.get_selected_task_type(1), False)),
|
| 251 |
+
inputs=[],
|
| 252 |
+
outputs=shown_tasks_misc,
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
leaderboard_table_misc = gr.Dataframe()
|
| 256 |
+
|
| 257 |
+
with gr.TabItem(
|
| 258 |
+
"๐ LLM MT-Bench benchmark",
|
| 259 |
+
elem_id="llm-benchmark-tab-table-mtbench",
|
| 260 |
+
id=2,
|
| 261 |
+
) as mtbench:
|
| 262 |
+
with gr.Column():
|
| 263 |
+
with gr.Row():
|
| 264 |
+
search_bar_mtbench = gr.Textbox(
|
| 265 |
+
label="Search models",
|
| 266 |
+
placeholder=" ๐ Separate multiple queries with ';' and press ENTER...",
|
| 267 |
+
show_label=True,
|
| 268 |
+
elem_id="search-bar",
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
with gr.Row():
|
| 272 |
+
langs_bar_mtbench = gr.CheckboxGroup(
|
| 273 |
+
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.mt_bench_language_list],
|
| 274 |
+
value=core.mt_bench_language_list,
|
| 275 |
+
label="Select languages to average over",
|
| 276 |
+
elem_id="column-select",
|
| 277 |
+
interactive=True,
|
| 278 |
+
scale=6,
|
| 279 |
+
)
|
| 280 |
+
with gr.Column(scale=1):
|
| 281 |
+
clear_mtbench = gr.ClearButton(
|
| 282 |
+
langs_bar_mtbench,
|
| 283 |
+
value="Deselect all languages",
|
| 284 |
+
size="sm",
|
| 285 |
+
scale=1,
|
| 286 |
)
|
| 287 |
+
select_mtbench = gr.Button(
|
| 288 |
+
value="Select all languages",
|
| 289 |
+
size="sm",
|
| 290 |
+
scale=1,
|
|
|
|
| 291 |
)
|
| 292 |
+
select_mtbench.click(
|
| 293 |
+
lambda: gr.CheckboxGroup(value=core.mt_bench_language_list),
|
| 294 |
+
inputs=[],
|
| 295 |
+
outputs=langs_bar_mtbench,
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
leaderboard_table_mtbench = gr.Dataframe(scale=5)
|
| 299 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
for comp, fn in [
|
| 301 |
(search_bar, "submit"),
|
| 302 |
(langs_bar, "change"),
|
| 303 |
(shown_tasks, "change"),
|
|
|
|
| 304 |
(model_types, "change"),
|
| 305 |
]:
|
| 306 |
getattr(comp, fn)(
|
| 307 |
core.update_df,
|
| 308 |
+
[shown_tasks, search_bar, langs_bar, model_types, gr.State(value=True)],
|
| 309 |
leaderboard_table,
|
| 310 |
)
|
| 311 |
+
|
| 312 |
+
for comp, fn in [
|
| 313 |
+
(search_bar_zero_shot, "submit"),
|
| 314 |
+
(model_types_zero_shot, "change"),
|
| 315 |
+
(langs_bar_zero_shot, "change"),
|
| 316 |
+
(shown_tasks_zero_shot, "change"),
|
| 317 |
+
]:
|
| 318 |
getattr(comp, fn)(
|
| 319 |
core.update_df,
|
| 320 |
+
[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot, gr.State(value=False)],
|
| 321 |
+
leaderboard_table_zero_shot,
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
for comp, fn in [
|
| 325 |
+
(search_bar_misc, "submit"),
|
| 326 |
+
(langs_bar_misc, "change"),
|
| 327 |
+
(shown_tasks_misc, "change"),
|
| 328 |
+
(model_types_misc, "change"),
|
| 329 |
+
]:
|
| 330 |
+
getattr(comp, fn)(
|
| 331 |
+
core.update_df,
|
| 332 |
+
[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, gr.State(value=False)],
|
| 333 |
leaderboard_table_misc,
|
| 334 |
)
|
| 335 |
+
|
| 336 |
+
for comp, fn in [
|
| 337 |
+
(search_bar_mtbench, "submit"),
|
| 338 |
+
(langs_bar_mtbench, "change"),
|
| 339 |
+
]:
|
| 340 |
getattr(comp, fn)(
|
| 341 |
core.update_df,
|
| 342 |
+
[gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)), search_bar_mtbench, langs_bar_mtbench, gr.State(value=[T_SYMBOLS["chat"]]), gr.State(value=False)], # TODO
|
| 343 |
leaderboard_table_mtbench,
|
| 344 |
)
|
| 345 |
|
| 346 |
gr.Blocks.load(
|
| 347 |
block=demo,
|
| 348 |
fn=core.update_df,
|
| 349 |
+
inputs=[shown_tasks, search_bar, langs_bar, model_types, gr.State(value=True)],
|
| 350 |
outputs=leaderboard_table,
|
| 351 |
)
|
| 352 |
|
| 353 |
gr.Blocks.load(
|
| 354 |
block=demo,
|
| 355 |
fn=core.update_df,
|
| 356 |
+
inputs=[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot, gr.State(value=False)],
|
| 357 |
+
outputs=leaderboard_table_zero_shot,
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
gr.Blocks.load(
|
| 361 |
+
block=demo,
|
| 362 |
+
fn=core.update_df,
|
| 363 |
+
inputs=[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, gr.State(value=False)],
|
| 364 |
outputs=leaderboard_table_misc,
|
| 365 |
)
|
| 366 |
|
| 367 |
gr.Blocks.load(
|
| 368 |
block=demo,
|
| 369 |
fn=core.update_df,
|
| 370 |
+
inputs=[gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)), search_bar_mtbench, langs_bar_mtbench, gr.State(value=[T_SYMBOLS["chat"]]), gr.State(value=False)],
|
| 371 |
outputs=leaderboard_table_mtbench,
|
| 372 |
)
|
| 373 |
|
core.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
import itertools
|
| 2 |
import os
|
| 3 |
|
| 4 |
-
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
import pandas as pd
|
| 7 |
from datasets import load_dataset
|
| 8 |
|
| 9 |
import style
|
| 10 |
-
from style import T_SYMBOLS, MT_BENCH_LANG_SYMBOLS, LANG_SYMBOLS
|
| 11 |
|
| 12 |
ZERO_SHOT_ONLY = ["BELEBELE", "MT-Bench"]
|
| 13 |
FEW_SHOT_ONLY = ["GSM8K", "TruthfulQA"]
|
|
@@ -29,7 +27,7 @@ def init():
|
|
| 29 |
task_groups_shots_df = hidden_df[hidden_df["Few_Shot"] == True][["Task_Group", "Number_Shots"]].drop_duplicates()
|
| 30 |
task_groups_shots_dict = task_groups_shots_df.set_index("Task_Group")["Number_Shots"].to_dict()
|
| 31 |
languages_list = hidden_df["Language"].drop_duplicates().str.upper().tolist()
|
| 32 |
-
mt_bench_language_list = hidden_df[hidden_df[
|
| 33 |
model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
|
| 34 |
model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()
|
| 35 |
|
|
@@ -115,8 +113,7 @@ def update_df(
|
|
| 115 |
|
| 116 |
# aggregate results over languages per task
|
| 117 |
df = aggregate_langs(df, tasks, langs)
|
| 118 |
-
|
| 119 |
-
df = df.sort_values(by='Average', ascending=False)
|
| 120 |
|
| 121 |
# filter models by search bar and model type
|
| 122 |
df = search_model(df, model_query)
|
|
@@ -128,67 +125,8 @@ def update_df(
|
|
| 128 |
return sort_cols(df, fewshot)
|
| 129 |
|
| 130 |
|
| 131 |
-
def update_task_groups_and_fewshot(current_selected_tab: int, model_types, langs_bar, is_fewshot_current: bool = False, ):
|
| 132 |
-
selected_task_type = get_selected_task_type(current_selected_tab)
|
| 133 |
-
available_tasks = get_available_task_groups(selected_task_type, is_fewshot_current)
|
| 134 |
-
new_selected_tasks = available_tasks.copy()
|
| 135 |
-
|
| 136 |
-
tasks_checkbox_group_update = gr.CheckboxGroup(
|
| 137 |
-
choices=available_tasks,
|
| 138 |
-
value=new_selected_tasks,
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
if current_selected_tab == 0:
|
| 142 |
-
is_fewshot_new = is_fewshot_current
|
| 143 |
-
fewshot_available = True
|
| 144 |
-
elif current_selected_tab == 1:
|
| 145 |
-
is_fewshot_new = False
|
| 146 |
-
fewshot_available = False
|
| 147 |
-
elif current_selected_tab == 2:
|
| 148 |
-
is_fewshot_new = False
|
| 149 |
-
fewshot_available = False
|
| 150 |
-
else:
|
| 151 |
-
raise ValueError(f"Unknown tab id {current_selected_tab}")
|
| 152 |
-
|
| 153 |
-
fewshot_radio_update = gr.Radio(
|
| 154 |
-
value=is_fewshot_new,
|
| 155 |
-
interactive=fewshot_available,
|
| 156 |
-
)
|
| 157 |
-
|
| 158 |
-
if current_selected_tab == 2:
|
| 159 |
-
model_types = gr.CheckboxGroup(
|
| 160 |
-
value=[T_SYMBOLS['chat']],
|
| 161 |
-
interactive=False
|
| 162 |
-
)
|
| 163 |
-
langs_bar = gr.CheckboxGroup(
|
| 164 |
-
choices=[(MT_BENCH_LANG_SYMBOLS.get(l, l), l) for l in mt_bench_language_list],
|
| 165 |
-
value=mt_bench_language_list,
|
| 166 |
-
interactive=True,
|
| 167 |
-
)
|
| 168 |
-
else:
|
| 169 |
-
model_types = gr.CheckboxGroup(
|
| 170 |
-
label="Select model type",
|
| 171 |
-
choices=[
|
| 172 |
-
(
|
| 173 |
-
f"Pretrained {T_SYMBOLS['pretrained']}",
|
| 174 |
-
T_SYMBOLS["pretrained"],
|
| 175 |
-
),
|
| 176 |
-
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
|
| 177 |
-
],
|
| 178 |
-
value=list(T_SYMBOLS.values()),
|
| 179 |
-
interactive=True
|
| 180 |
-
)
|
| 181 |
-
langs_bar = gr.CheckboxGroup(
|
| 182 |
-
choices=[(LANG_SYMBOLS.get(l, l), l) for l in languages_list],
|
| 183 |
-
value=languages_list,
|
| 184 |
-
interactive=True,
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
return [tasks_checkbox_group_update, fewshot_radio_update, current_selected_tab, model_types, langs_bar]
|
| 188 |
-
|
| 189 |
-
|
| 190 |
def get_selected_task_type(task_type_id):
|
| 191 |
-
task_types = {0: "accuracy", 1: "misc", 2: "mtbench_score"}
|
| 192 |
selected_task_type = task_types[task_type_id]
|
| 193 |
return selected_task_type
|
| 194 |
|
|
|
|
| 1 |
import itertools
|
| 2 |
import os
|
| 3 |
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import pandas as pd
|
| 6 |
from datasets import load_dataset
|
| 7 |
|
| 8 |
import style
|
|
|
|
| 9 |
|
| 10 |
ZERO_SHOT_ONLY = ["BELEBELE", "MT-Bench"]
|
| 11 |
FEW_SHOT_ONLY = ["GSM8K", "TruthfulQA"]
|
|
|
|
| 27 |
task_groups_shots_df = hidden_df[hidden_df["Few_Shot"] == True][["Task_Group", "Number_Shots"]].drop_duplicates()
|
| 28 |
task_groups_shots_dict = task_groups_shots_df.set_index("Task_Group")["Number_Shots"].to_dict()
|
| 29 |
languages_list = hidden_df["Language"].drop_duplicates().str.upper().tolist()
|
| 30 |
+
mt_bench_language_list = hidden_df[hidden_df["Task_Group"] == "MTBENCH"]["Language"].drop_duplicates().str.upper().tolist()
|
| 31 |
model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
|
| 32 |
model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()
|
| 33 |
|
|
|
|
| 113 |
|
| 114 |
# aggregate results over languages per task
|
| 115 |
df = aggregate_langs(df, tasks, langs)
|
| 116 |
+
df = df.sort_values(by="Average", ascending=False)
|
|
|
|
| 117 |
|
| 118 |
# filter models by search bar and model type
|
| 119 |
df = search_model(df, model_query)
|
|
|
|
| 125 |
return sort_cols(df, fewshot)
|
| 126 |
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
def get_selected_task_type(task_type_id):
|
| 129 |
+
task_types = {0: "accuracy", 1: "misc", 2: "mtbench_score", 3: "accuracy"}
|
| 130 |
selected_task_type = task_types[task_type_id]
|
| 131 |
return selected_task_type
|
| 132 |
|
style.py
CHANGED
|
@@ -11,10 +11,101 @@ CSS = """
|
|
| 11 |
}
|
| 12 |
"""
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
LANG_SYMBOLS = {
|
| 20 |
"BG": "๐ง๐ฌ BG",
|
|
@@ -37,13 +128,7 @@ LANG_SYMBOLS = {
|
|
| 37 |
"RO": "๐ท๐ด RO",
|
| 38 |
"SK": "๐ธ๐ฐ SK",
|
| 39 |
"SL": "๐ธ๐ฎ SL",
|
| 40 |
-
"SV": "๐ธ๐ช SV"
|
| 41 |
}
|
| 42 |
|
| 43 |
-
MT_BENCH_LANG_SYMBOLS = {
|
| 44 |
-
"ES": "๐ช๐ธ ES",
|
| 45 |
-
"EN": "๐ฌ๐ง EN",
|
| 46 |
-
"DE": "๐ฉ๐ช DE",
|
| 47 |
-
"FR": "๐ซ๐ท FR",
|
| 48 |
-
"IT": "๐ฎ๐น IT"
|
| 49 |
-
}
|
|
|
|
| 11 |
}
|
| 12 |
"""
|
| 13 |
|
| 14 |
+
OPEN_LLM_LEADERBOARD_CSS = """
|
| 15 |
+
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
| 16 |
+
table td:first-child,
|
| 17 |
+
table th:first-child {
|
| 18 |
+
max-width: 400px;
|
| 19 |
+
overflow: auto;
|
| 20 |
+
white-space: nowrap;
|
| 21 |
}
|
| 22 |
+
/* Full width space */
|
| 23 |
+
.gradio-container {
|
| 24 |
+
max-width: 95% !important;
|
| 25 |
+
}
|
| 26 |
+
/* Text style and margins */
|
| 27 |
+
.markdown-text {
|
| 28 |
+
font-size: 16px !important;
|
| 29 |
+
}
|
| 30 |
+
#models-to-add-text {
|
| 31 |
+
font-size: 18px !important;
|
| 32 |
+
}
|
| 33 |
+
#citation-button span {
|
| 34 |
+
font-size: 16px !important;
|
| 35 |
+
}
|
| 36 |
+
#citation-button textarea {
|
| 37 |
+
font-size: 16px !important;
|
| 38 |
+
}
|
| 39 |
+
#citation-button > label > button {
|
| 40 |
+
margin: 6px;
|
| 41 |
+
transform: scale(1.3);
|
| 42 |
+
}
|
| 43 |
+
#search-bar-table-box > div:first-child {
|
| 44 |
+
background: none;
|
| 45 |
+
border: none;
|
| 46 |
+
}
|
| 47 |
+
#search-bar {
|
| 48 |
+
padding: 0px;
|
| 49 |
+
}
|
| 50 |
+
.tab-buttons button {
|
| 51 |
+
font-size: 20px;
|
| 52 |
+
}
|
| 53 |
+
/* Filters style */
|
| 54 |
+
#filter_type {
|
| 55 |
+
border: 0;
|
| 56 |
+
padding-left: 0;
|
| 57 |
+
padding-top: 0;
|
| 58 |
+
}
|
| 59 |
+
#filter_type label {
|
| 60 |
+
display: flex;
|
| 61 |
+
}
|
| 62 |
+
#filter_type label > span {
|
| 63 |
+
margin-top: var(--spacing-lg);
|
| 64 |
+
margin-right: 0.5em;
|
| 65 |
+
}
|
| 66 |
+
#filter_type label > .wrap {
|
| 67 |
+
width: 103px;
|
| 68 |
+
}
|
| 69 |
+
#filter_type label > .wrap .wrap-inner {
|
| 70 |
+
padding: 2px;
|
| 71 |
+
}
|
| 72 |
+
#filter_type label > .wrap .wrap-inner input {
|
| 73 |
+
width: 1px;
|
| 74 |
+
}
|
| 75 |
+
#filter-columns-type {
|
| 76 |
+
border: 0;
|
| 77 |
+
padding: 0.5;
|
| 78 |
+
}
|
| 79 |
+
#filter-columns-size {
|
| 80 |
+
border: 0;
|
| 81 |
+
padding: 0.5;
|
| 82 |
+
}
|
| 83 |
+
#box-filter > .form {
|
| 84 |
+
border: 0;
|
| 85 |
+
}
|
| 86 |
+
/* Header styles */
|
| 87 |
+
#header-title {
|
| 88 |
+
text-align: left;
|
| 89 |
+
display: inline-block;
|
| 90 |
+
}
|
| 91 |
+
#header-row {
|
| 92 |
+
display: flex;
|
| 93 |
+
justify-content: space-between;
|
| 94 |
+
align-items: center;
|
| 95 |
+
}
|
| 96 |
+
#header-row .gradio-html {
|
| 97 |
+
flex-grow: 1;
|
| 98 |
+
}
|
| 99 |
+
#oauth-button {
|
| 100 |
+
height: auto;
|
| 101 |
+
min-width: max-content;
|
| 102 |
+
white-space: nowrap;
|
| 103 |
+
padding: 10px 20px;
|
| 104 |
+
border-radius: 4px;
|
| 105 |
+
}
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
T_SYMBOLS = {"pretrained": "๐ข", "chat": "๐ฌ"}
|
| 109 |
|
| 110 |
LANG_SYMBOLS = {
|
| 111 |
"BG": "๐ง๐ฌ BG",
|
|
|
|
| 128 |
"RO": "๐ท๐ด RO",
|
| 129 |
"SK": "๐ธ๐ฐ SK",
|
| 130 |
"SL": "๐ธ๐ฎ SL",
|
| 131 |
+
"SV": "๐ธ๐ช SV",
|
| 132 |
}
|
| 133 |
|
| 134 |
+
MT_BENCH_LANG_SYMBOLS = {"ES": "๐ช๐ธ ES", "EN": "๐ฌ๐ง EN", "DE": "๐ฉ๐ช DE", "FR": "๐ซ๐ท FR", "IT": "๐ฎ๐น IT"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|