Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,17 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# Load the model
|
19 |
-
model = gr.load("huggingface/Liquid1/llama-3-8b-liquid-coding-agent")
|
20 |
-
|
21 |
-
# Preload large datasets or pre-trained weights (if applicable)
|
22 |
-
# ...
|
23 |
-
|
24 |
-
# Launch the model in a thread
|
25 |
-
thread = threading.Thread(target=model.launch)
|
26 |
-
|
27 |
-
# Start the thread
|
28 |
-
thread.start()
|
29 |
-
|
30 |
-
# Explicitly trigger garbage collection to free up memory
|
31 |
-
gc.collect()
|
32 |
-
|
33 |
-
# Continue with other tasks or image generation code
|
34 |
-
# ...
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import concurrent.futures
|
3 |
+
|
4 |
+
# Load the model into RAM
|
5 |
+
model = gr.load("models/TheBloke/SOLAR-10.7B-Instruct-v1.0-uncensored-GGUF")
|
6 |
+
|
7 |
+
def interact(input):
|
8 |
+
# Define the function for user interaction
|
9 |
+
response = model(input)
|
10 |
+
return response
|
11 |
+
|
12 |
+
# Use ThreadPoolExecutor to manage the threads
|
13 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
|
14 |
+
# Create a Gradio interface with the loaded model
|
15 |
+
interface = gr.Interface(fn=interact, inputs="text", outputs="image")
|
16 |
+
# Handle the interactions with Gradio
|
17 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|