File size: 2,974 Bytes
d296c34
 
e87f4b7
 
025e412
 
 
 
9a30a8c
 
 
025e412
a755c90
 
d296c34
9a30a8c
 
 
 
 
 
 
 
d296c34
 
 
4c18e6f
025e412
d296c34
 
 
 
e87f4b7
 
d296c34
e87f4b7
 
 
 
 
 
 
 
d296c34
 
e87f4b7
 
 
 
 
 
 
 
 
 
 
 
 
9a30a8c
 
 
 
025e412
 
d296c34
 
4c18e6f
d296c34
 
 
4c18e6f
d296c34
4c18e6f
 
 
 
a755c90
4c18e6f
 
 
 
a755c90
 
 
 
 
 
d296c34
 
4c18e6f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import streamlit as st
from st_audiorec import st_audiorec
from Modules.Speech2Text.transcribe import transcribe
import base64
from langchain_mistralai import ChatMistralAI
from dotenv import load_dotenv
load_dotenv() # load .env api keys 
import os

from Modules.rag import rag_chain

mistral_api_key = os.getenv("MISTRAL_API_KEY")
from Modules.PoseEstimation import pose_estimator
from utils import save_uploaded_file

def format_messages(messages):
    formatted_messages = ""
    for message in messages:
        role = message["role"]
        content = message["content"]
        formatted_messages += f"{role}: {content}\n"
    return formatted_messages

st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
# Create two columns
col1, col2 = st.columns(2)
video_uploaded = None
llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0)

# First column containers
with col1:
    st.subheader("Audio Recorder")
    recorded = False
    temp_path = 'data/temp_audio/audio_file.wav'
    wav_audio_data = st_audiorec()
    if wav_audio_data is not None:
        with open(temp_path, 'wb') as f:
            # Write the audio data to the file
            f.write(wav_audio_data)
        instruction = transcribe(temp_path)
        print(instruction)
        recorded = True


    st.subheader("LLM answering")
    if recorded:
        if "messages" not in st.session_state:
            st.session_state.messages = []
        for message in st.session_state.messages:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])

        st.session_state.messages.append({"role": "user", "content": instruction})
        with st.chat_message("user"):
            st.markdown(instruction)

        with st.chat_message("assistant"):
            # Build answer from LLM
            response = rag_chain.invoke(
                        instruction
                        )
            print(type(response))
            st.session_state.messages.append({"role": "assistant", "content": response})
            st.markdown(response)

    st.subheader("Movement Analysis")
        # TO DO 
# Second column containers
with col2:
    st.subheader("Sports Agenda")
        # TO DO
    st.subheader("Video Analysis")
    ask_video = st.empty()
    if video_uploaded is None:
        video_uploaded = ask_video.file_uploader("Choose a video file", type=["mp4", "ogg", "webm"])
    if video_uploaded:
        video_uploaded = save_uploaded_file(video_uploaded)
        ask_video.empty()
        _left, mid, _right = st.columns(3)
        with mid:
            st.video(video_uploaded)
            apply_pose = st.button("Apply Pose Estimation")

        if apply_pose:
            with st.spinner("Processing video"):
                keypoints = pose_estimator.get_keypoints_from_keypoints(pose_estimator.model, video_uploaded)
            

    st.subheader("Graph Displayer")
        # TO DO