Spaces:
Sleeping
Sleeping
File size: 4,440 Bytes
d296c34 e87f4b7 025e412 9aff9bb 025e412 989534c 9a30a8c 9aff9bb 989534c 9a30a8c 025e412 a755c90 cdb28da d296c34 9a30a8c d296c34 4c18e6f 025e412 9aff9bb d296c34 85b06be e87f4b7 85b06be 989534c d296c34 85b06be e87f4b7 85b06be e87f4b7 85b06be e87f4b7 6eebc5e e87f4b7 85b06be 989534c 9aff9bb 989534c 9aff9bb 989534c 025e412 d296c34 989534c 4c18e6f d296c34 989534c 4c18e6f a755c90 989534c a586a8c 989534c a586a8c 4c18e6f a586a8c e78912d 989534c 9ad7a80 cdb28da 85b06be a755c90 85b06be 989534c 85b06be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import streamlit as st
from st_audiorec import st_audiorec
from Modules.Speech2Text.transcribe import transcribe
import base64
from langchain_mistralai import ChatMistralAI
from langchain_core.prompts import ChatPromptTemplate
from dotenv import load_dotenv
load_dotenv() # load .env api keys
import os
import shutil
from Modules.rag import rag_chain
from Modules.router import router_chain
from Modules.PoseEstimation.pose_agent import agent_executor
mistral_api_key = os.getenv("MISTRAL_API_KEY")
from Modules.PoseEstimation import pose_estimator
from utils import save_uploaded_file, encode_video_H264
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
# Create two columns
col1, col2 = st.columns(2)
video_uploaded = None
llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0)
prompt = ChatPromptTemplate.from_template(
template =""" You are a personal AI sports coach with an expertise in nutrition and fitness.
You are having a conversation with your client, which is either a beginner or an advanced athlete.
You must be gentle, kind, and motivative.
Always try to answer concisely to the queries.
User: {question}
AI Coach:"""
)
base_chain = prompt | llm
# First column containers
with col1:
st.subheader("LLM answering")
if "messages" not in st.session_state:
st.session_state.messages = []
if "file_name" not in st.session_state:
st.session_state.file_name = None
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("What is up?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant", avatar="data/AI_Bro.png"):
# Build answer from LLM
direction = router_chain.invoke({"question":prompt})
if direction=='fitness_advices':
with st.spinner("Thinking..."):
response = rag_chain.invoke(
prompt
)
elif direction=='smalltalk':
with st.spinner("Thinking..."):
response = base_chain.invoke(
{"question":prompt}
).content
elif direction =='movement_analysis':
if st.session_state.file_name is not None:
prompt += "the file name is " + st.session_state.file_name
with st.spinner("Analyzing movement..."):
response = agent_executor.invoke(
{"input" : prompt}
)["output"]
st.session_state.messages.append({"role": "assistant", "content": response})
st.markdown(response)
# Second column containers
with col2:
# st.subheader("Sports Agenda")
# TO DO
st.subheader("Video Analysis")
video_uploaded = st.file_uploader("Choose a video file", type=["mp4", "ogg", "webm", "MOV"])
if video_uploaded:
video_uploaded = save_uploaded_file(video_uploaded)
if video_uploaded.split("/")[-1] != st.session_state.file_name:
shutil.rmtree('fig', ignore_errors=True)
shutil.rmtree('/home/user/.pyenv/runs', ignore_errors=True)
st.session_state.file_name = None
st.session_state.file_name = video_uploaded.split("/")[-1]
_left, mid, _right = st.columns([1, 3, 1])
with mid:
if os.path.exists('/home/user/.pyenv/runs'):
predict_list = os.listdir(os.path.join('/home/user/.pyenv/runs', 'pose'))
predict_list.sort()
predict_dir = predict_list[-1]
file_name = os.listdir(os.path.join('/home/user/.pyenv/runs', 'pose', predict_dir))[0]
file_path =os.path.join('/home/user/.pyenv/runs', 'pose', predict_dir, file_name)
file_path = encode_video_H264(file_path, remove_original=True)
st.video(file_path, loop=True)
else :
st.video(video_uploaded)
if os.path.exists('fig'):
st.subheader("Graph Displayer")
file_list = os.listdir('fig')
for file in file_list:
st.image(os.path.join('fig', file)) |