Spaces:
Runtime error
Runtime error
File size: 26,845 Bytes
68dfbad 31f9459 68dfbad 31f9459 68dfbad 31f9459 68dfbad 31f9459 68dfbad 47a5c4c 68dfbad 65ee50b 68dfbad 8c2723b 68dfbad 47a5c4c 68dfbad 15e859b 68dfbad 47a5c4c 68dfbad 03d79a2 68dfbad 03d79a2 68dfbad 03d79a2 68dfbad 03d79a2 15e859b 47a5c4c 68dfbad 03d79a2 68dfbad 8a3d943 68dfbad c46b39f 47a5c4c 68dfbad a681eb2 68dfbad a681eb2 68dfbad 47a5c4c 68dfbad 47a5c4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import io
import os
import warnings
import replicate
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
import io, os
from numpy import random
from PIL import Image, ImageDraw, Image, ImageFont
import pandas as pd
import random
import string
import webbrowser
import urllib
import requests
from base64 import b64encode
import string
import metaseg
def set_engine(engine:str):
# Set up our connection to the API.
stability_api = client.StabilityInference(
key=os.environ['STABILITY_KEY'], # API Key reference.
verbose=True, # Print debug messages.
engine = engine, # Set the engine to use for generation. For SD 2.0 use "stable-diffusion-v2-0".
# Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0 stable-inpainting-v1-0 stable-inpainting-512-v2-0
)
return stability_api
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = "cuda"
sam = metaseg.sam_model_registry[model_type](checkpoint='sam_vit_h_4b8939.pth')
predictor = metaseg.SamPredictor(sam)
sam.to(device="cpu")
#@title
import numpy as np
import openai
import cv2
import gradio as gr
from serpapi import GoogleSearch
import random
import replicate
import time
openai.api_key = os.environ['OPENAI_API_KEY']
def generate_prompt(body_type,exterior_color,roof_type,wheels_and_tires):
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Generate description of automobile from the following desciptors-Realistic image of an automobile with {exterior_color} color {body_type} with {roof_type}.Start with word draw do not start with this.Do not describe about interior of the car.",
temperature=0.1,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
result = response["choices"][0]["text"]
print(result)
return result
def text_to_image(prompt,guidance_model,cfg,engine):
# Set up our initial generation parameters.
print(f'text_to_image: {prompt}')
stability_api = set_engine(engine)
answers = stability_api.generate(
prompt=prompt,
seed=992446758, # If a seed is provided, the resulting generated image will be deterministic.
# What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
# Note: This isn't quite the case for CLIP Guided generations, which we tackle in the CLIP Guidance documentation.
steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
cfg_scale=cfg, # Influences how strongly your generation is guided to match your prompt.
# Setting this value higher increases the strength in which it tries to match your prompt.
# Defaults to 7.0 if not specified.
width=512, # Generation width, defaults to 512 if not included.
height=512, # Generation height, defaults to 512 if not included.
samples=1, # Number of images to generate, defaults to 1 if not included.
sampler=generation.SAMPLER_K_DPMPP_2S_ANCESTRAL ,# Choose which sampler we want to denoise our generation with.
# Defaults to k_lms if not specified. Clip Guidance only supports ancestral samplers.
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
guidance_preset = generation.GUIDANCE_PRESET_FAST_GREEN,
# guidance_strength = guidance_strength,
guidance_models = [guidance_model]
)
# Set up our warning to print to the console if the adult content classifier is tripped.
# If adult content classifier is not tripped, save generated images.
for resp in answers:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
warnings.warn(
"Your request activated the API's safety filters and could not be processed."
"Please modify the prompt and try again.")
if artifact.type == generation.ARTIFACT_IMAGE:
img = Image.open(io.BytesIO(artifact.binary))
# img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
return img
def imag2img(prompt,init_image,guidance_model,cfg,engine):
stability_api = set_engine(engine)
# Set up our initial generation parameters.
# init_image = init_image.resize((512,512))
answers2 = stability_api.generate(
prompt=prompt,
init_image=init_image, # Assign our previously generated img as our Initial Image for transformation.
start_schedule=0.6, # Set the strength of our prompt in relation to our initial image.
seed=992446758, # If attempting to transform an image that was previously generated with our API,
# initial images benefit from having their own distinct seed rather than using the seed of the original image generation.
steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
cfg_scale=cfg, # Influences how strongly your generation is guided to match your prompt.
# Setting this value higher increases the strength in which it tries to match your prompt.
# Defaults to 7.0 if not specified.
width=512, # Generation width, defaults to 512 if not included.
height=512, # Generation height, defaults to 512 if not included.
sampler=generation.SAMPLER_K_DPMPP_2S_ANCESTRAL ,# Choose which sampler we want to denoise our generation with.
# Defaults to k_lms if not specified. Clip Guidance only supports ancestral samplers.
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
guidance_preset = generation.GUIDANCE_PRESET_FAST_GREEN,
# guidance_strength = guidance_strength,
guidance_models = [guidance_model]
)
# Set up our warning to print to the console if the adult content classifier is tripped.
# If adult content classifier is not tripped, save generated image.
for resp in answers2:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
warnings.warn(
"Your request activated the API's safety filters and could not be processed."
"Please modify the prompt and try again.")
if artifact.type == generation.ARTIFACT_IMAGE:
img2 = Image.open(io.BytesIO(artifact.binary))
return img2
def inpainting(prompt,image,mask,guidance_model,cfg,engine):
stability_api = set_engine(engine)
# image = Image.fromarray(image).resize((512,512))
# mask = Image.fromarray(mask).resize((512,512))
# init_image = image['image'].convert("RGB").resize((512,512))
# mask = np.array(image['mask'].convert("RGB").resize((512,512)))
# print(mask.__class__)
# mask[mask==255] = 125
# mask[mask==0] = 255
# mask[mask==125] = 0
# mask = Image.fromarray(mask)
answers = stability_api.generate(
prompt=prompt,
init_image=Image.fromarray(image), # Assign our previously generated img as our Initial Image for transformation.
mask_image=Image.fromarray(mask),
start_schedule=1, # Set the strength of our prompt in relation to our initial image.
seed=992446758, # If attempting to transform an image that was previously generated with our API,
# initial images benefit from having their own distinct seed rather than using the seed of the original image generation.
steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
cfg_scale=cfg, # Influences how strongly your generation is guided to match your prompt.
# Setting this value higher increases the strength in which it tries to match your prompt.
# Defaults to 7.0 if not specified.
width=512, # Generation width, defaults to 512 if not included.
height=512, # Generation height, defaults to 512 if not included.
sampler=generation.SAMPLER_K_DPMPP_2S_ANCESTRAL ,# Choose which sampler we want to denoise our generation with.
# Defaults to k_lms if not specified. Clip Guidance only supports ancestral samplers.
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
guidance_preset = generation.GUIDANCE_PRESET_FAST_GREEN,
# guidance_strength = guidance_strength,
guidance_models = [guidance_model]
)
# Set up our warning to print to the console if the adult content classifier is tripped. If adult content classifier is not tripped, display generated image.
for resp in answers:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
warnings.warn(
"Your request activated the API's safety filters and could not be processed."
"Please modify the prompt and try again.")
if artifact.type == generation.ARTIFACT_IMAGE:
img2 = Image.open(io.BytesIO(artifact.binary)) # Set our resulting initial image generation as 'img2' to avoid overwriting our previous 'img' generation.
return img2
selected_pixels = []
exception = ''
def crop_image(image,mask):
print(image.__class__)
Image.fromarray(image).save('/tmp/image.png')
image = cv2.imread('/tmp/image.png')
Image.fromarray(mask).save('/tmp/mask.png')
mask = cv2.imread('/tmp/mask.png',0)
mask[mask==0] = 125
mask[mask==255]=0
mask[mask==125]=255
# Set 0 as threshold to create a binary mask
ret, binary_mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)
# Find contours in the binary mask
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Get the bounding box of the contour
x, y, w, h = cv2.boundingRect(contours[0])
# Cut the region of interest (ROI) from the original image
roi = image[y:y+h, x:x+w]
Image.fromarray(roi).save('cropped.png')
url = upload_img_url('cropped.png')
for i in range(1,15):
try:
serpai_op = use_serpapi(url,i)
break
except Exception as e:
print(e)
return serpai_op
def use_serpapi(image_url,number=0):
api_key = os.environ[f'SERPAPI_KEY{number}']
params = {
"engine": "google_reverse_image",
"image_url": image_url,
"api_key": api_key
}
search = GoogleSearch(params)
results = search.get_dict()
print(f'Results SERPAPI:{results}')
inline_images = results["inline_images"][:5]
shopping_results = []
shopping_results+=[result_dct for result in inline_images for result_dct in shopping_url(result['title'],api_key)]
car_df = pd.DataFrame(shopping_results)
return car_df
def shopping_url(product_title,api_key):
params = {
"engine": "google_shopping",
"q": product_title,
"api_key": api_key
}
search = GoogleSearch(params)
results = search.get_dict()
shopping_results = results["shopping_results"]
return [{'title': result_dict['title'],
'price':result_dict['price'], 'link': result_dict['link'],
}
for result_dict in shopping_results ]
def upload_img_url(image_path):
API_ENDPOINT = "https://api.imgbb.com/1/upload"
with open(image_path, "rb") as image:
image_data_ = b64encode(image.read())
image_data = image_data_.decode('utf-8')
payload = {
"key": os.environ['IMGBB_API_KEY'],
"image": image_data
}
# Send the API request
response = requests.post(API_ENDPOINT, payload)
print(response)
# Get the generated link from the API response
response_json = response.json() #
print("Response json:", response_json)
image_url = response_json["data"]["url"]
print("Generated link:", image_url)
return image_url
def generate_mask(image,evt:gr.SelectData):
t1 = time.perf_counter()
print(f"image inpainting: {image}")
print('ENter fucntion')
selected_pixels.append(evt.index)
print(f'Selected {selected_pixels}')
predictor.set_image(image)
print('After predictor.set_image(')
input_points = np.array(selected_pixels)
input_labels = np.ones(input_points.shape[0])
print('After labels')
mask, _, _ = predictor.predict(
point_coords = input_points,
point_labels = input_labels,
multimask_output = False
)
print(f'mask: {mask}')
mask = np.logical_not(mask)
mask = Image.fromarray(mask[0,:,:])
print(f'RETURNING TYPE{mask.__class__}')
NUM = random.randint(1,100000000000000000000000)
print(f"mask_{NUM}.png")
print(f'{time.perf_counter()-t1} seconds')
return mask
def depth2image_replicate(image,positive_prompt,negative_prompt,number_of_inference_steps,scheduler):
image.save("/tmp/uploaded_image_depth_to_image.png")
response = replicate.run(
"jagilley/stable-diffusion-depth2img:68f699d395bc7c17008283a7cef6d92edc832d8dc59eb41a6cafec7fc70b85bc",
input = {
"prompt": positive_prompt,
"input_image": open("/tmp/uploaded_image_depth_to_image.png","rb"),
"num_inference_steps":int(number_of_inference_steps),
"negative_prompt": negative_prompt,
"scheduler": scheduler
})
resp = requests.get(response[0])
with open('/tmp/file.png','wb') as file:
file.write(resp.content)
return Image.open(file.name)
def inpainting_replicate(prompt,img,mask,number_of_inference_steps):
Image.fromarray(img).save('/tmp/inpaining_input.png')
Image.fromarray(mask).save('/tmp/inpaining_mask.png')
output = replicate.run(
"andreasjansson/stable-diffusion-inpainting:e490d072a34a94a11e9711ed5a6ba621c3fab884eda1665d9d3a282d65a21180",
input={"prompt": "a futristic green luxury car with big wheels",
"image":open('/tmp/inpaining_input.png',"rb"),
"mask": open('/tmp/inpaining_mask.png','rb'),
"invert_mask": True,
"num_inference_steps":int(number_of_inference_steps),
})
resp = requests.get(output[0])
with open('/tmp/inpainting_file.png','wb') as file:
file.write(resp.content)
return Image.open(file.name)
#############GRADIO INTERFACE#################################################################################
# import gradio as gr
# import gradio as gr
def prompt_use_for_next(text_prompt,*args):
return text_prompt,text_to_image(text_prompt,*args)
def img2img_use_for_next(*args):
return args[1],imag2img(*args)
def inpainting_use_for_next(image):
return image
GUIDANCE_MODELS = ['ViT-L-14--openai', 'ViT-H-14--good', 'ViT-B-32--laion2b_e16', 'ViT-L-14--laion400m_e32', 'ViT-B-32--openai', 'ViT-B-16--openai']
ENGINE_MODELS = ['stable-diffusion-xl-beta-v2-2-2','stable-diffusion-768-v2-1','stable-diffusion-512-v2-0','stable-diffusion-768-v2-0','stable-diffusion-v1']
with gr.Blocks(theme="Ajaxon6255/Emerald_Isle") as demo:
gr.Markdown("""<h1 style="color:white;font-family:monospace;text-align:center">TechnoForge Automotive</h1>""")
gr.Markdown("""<p style='color:white;font-family:monospace'>Attention car enthusiasts! Are you looking for a car that combines traditional craftsmanship with cutting-edge technology? Look no further than TechnoForge Automotive! Inspired by the master blacksmith and craftsman Hephaestus, our team combines the latest in stable diffusion technology with the power of GPT-3 to create the most innovative and precise car designs on the market.Just like Hephaestus forged his creations with the utmost care and precision, we use stable diffusion to ensure the highest level of quality in every detail of our designs. And with the power of GPT-3 technology at our fingertips, we can push the limits of innovation and take car designing to new heights.</p>""")
gr.HTML(value="<img id='HeadImage' src='https://i.ibb.co/RYqqt4Z/op9.png' alt='Generate knowlwdge graph' width='1200' height='300' style='border: 2px solid #fff;'/>")
gr.HTML(value="<style>#HeadImage:hover{box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24),0 17px 50px 0 rgba(0,0,0,0.19);}</style>")
######################################################################################################################################
with gr.Accordion(label="Generte Prompt"):
with gr.Row():
with gr.Column():
body_type = gr.Textbox(label = "Type of car (eg: SUV, Sedan)")
color = gr.Textbox(label="Car color")
roof_type = gr.Textbox(label="Roof Type (eg: Sunroof, foldable roof)")
with gr.Column():
gen_prompt = gr.Textbox(label="Use this Prompt")
gr.HTML(value="<img id='generate_prompt' src='https://i.ibb.co/XsHCsK7/1.png' alt='Generate knowlwdge graph' width='1200' height='300' style='border: 2px solid #fff;'/>")
gr.HTML(value="<style>#generate_prompt:hover{box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24),0 17px 50px 0 rgba(0,0,0,0.19);}</style>")
with gr.Row():
with gr.Column():
prompt_gen = gr.Button("Generate Prompt",elem_id="gradio_button")
with gr.Column():
prompt_next = gr.Button("Use this text as next",elem_id="gradio_button")
prompt_gen.click(generate_prompt,[body_type,color,roof_type],[gen_prompt])
#########################################################################################################################
with gr.Accordion(label="Text2Image"):
with gr.Row():
with gr.Column():
text2imge_prompt = gr.Textbox(label="Prompt for Text")
text2imge_guidnace_model = gr.Dropdown(value='ViT-L-14--laion400m_e32',choices=GUIDANCE_MODELS,label="Guidance Model")
with gr.Column():
text2imge_op = gr.Image(type="pil")
text2image_cfg = gr.Slider(label="CFG Scale",mimimum=0,maximum=8,value=7.0,info="This dictates how closely the engine attempts to match a generation to the provided prompt.")
text2imge_model = gr.Dropdown(label="Engine",choices=ENGINE_MODELS,value='stable-diffusion-xl-beta-v2-2-2')
# op2 = gr.Image()
gr.HTML(value="<img id='textImage' src='https://i.ibb.co/6wDWhvd/2.png' alt='Generate knowlwdge graph' width='1200' height='300' style='border: 2px solid #fff;'/>")
gr.HTML(value="<style>#textImage:hover{box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24),0 17px 50px 0 rgba(0,0,0,0.19);}</style>")
with gr.Row():
with gr.Column():
text2imge_button = gr.Button("Transform",elem_id="gradio_button")
with gr.Column():
text2imge_next = gr.Button("Use this Image as next",elem_id="gradio_button")
prompt_gen.click(generate_prompt,[body_type,color,roof_type],[gen_prompt])
text2imge_button.click(text_to_image,[text2imge_prompt,text2imge_guidnace_model,text2image_cfg,text2imge_model],[text2imge_op])
prompt_next.click(prompt_use_for_next,[gen_prompt,text2imge_guidnace_model,text2image_cfg,text2imge_model],[text2imge_prompt,text2imge_op])
#########################################################################################################################
# with gr.Accordion(label="Image2Image"):
# with gr.Row():
# with gr.Column():
# img2imge_prompt = gr.Textbox(label="Prompt for img2img")
# img2image_image = gr.Image(type="pil")
# img2image_guidnace_model = gr.Dropdown(value='ViT-L-14--laion400m_e32',choices=GUIDANCE_MODELS,label="Guidance Model")
# with gr.Column():
# img2image_op = gr.Image()
# img2img_cfg = gr.Slider(label="Cfg Scale",mimimum=0,maximum=8,value=7.0)
# img2img_model = gr.Dropdown(label="Engine",choices=ENGINE_MODELS,value='stable-diffusion-xl-beta-v2-2-2')
# with gr.Row():
# with gr.Column():
# img2img_button = gr.Button("Transform",elem_id="gradio_button")
# with gr.Column():
# img2img_next = gr.Button("Use this Image as next",elem_id="gradio_button")
# img2img_button.click(imag2img,[img2imge_prompt,img2image_image,img2image_guidnace_model,img2img_cfg,img2img_model],[img2image_op])
# text2imge_next.click(img2img_use_for_next,[img2imge_prompt,text2imge_op,img2image_guidnace_model,img2img_cfg,img2img_model],[img2image_image,img2image_op])
#########################################################################################################################
with gr.Accordion(label="Depth2Image"):
with gr.Row():
with gr.Column():
depth2image_positive_prompt = gr.Textbox(label="Positive Prompt")
depth2image_negative_prompt= gr.Textbox(label="Negative Prompt")
depth2image_image = gr.Image(type="pil")
with gr.Column():
depth2image_op = gr.Image()#type="pil")
depth2image_inference_steps = gr.Slider(label="Inference Steps",mimimum=1,maximum=500,value=50,step=1,info="Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.")#204
depth2image_scheduler = gr.Dropdown(label="Scheduler",choices=['DDIM','K_EULER','DPMSolverMultistep','K_EULER_ANCESTRAL','PNDM','KLMS'],value='DPMSolverMultistep')
gr.HTML(value="<img id='depth_to_image' src='https://i.ibb.co/c2pKpLJ/depth2image.png' alt='Generate knowlwdge graph' width='1200' height='300' style='border: 2px solid #fff;'/>")
gr.HTML(value="<style>#depth_to_image:hover{box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24),0 17px 50px 0 rgba(0,0,0,0.19);}</style>")
with gr.Row():
with gr.Column():
depth2image_button = gr.Button("Transform",elem_id="gradio_button")
with gr.Column():
depth2image_nxt_button = gr.Button("Use Image as next")
# with gr.Column():
# img2img_next = gr.Button("Use this Image as next",elem_id="gradio_button")
#depth2image_replicate(image,positive_prompt,negative_prompt,number_of_inference_steps,scheduler)
depth2image_button.click(depth2image_replicate,[depth2image_image,depth2image_positive_prompt,depth2image_negative_prompt,
depth2image_inference_steps,depth2image_scheduler],[depth2image_op])
text2imge_next.click(inpainting_use_for_next,text2imge_op,depth2image_image)
#########################################################################################################################
with gr.Accordion("Inpainting"):
with gr.Row():
with gr.Column():
inpainting_prompt = gr.Textbox(label="Prompt for inpainting")
inpainting_image = gr.Image()#type="pil",tool="sketch")
inpainting_guidnace_model = gr.Dropdown(value='ViT-L-14--laion400m_e32',choices=GUIDANCE_MODELS,label="Guidance Model")
inpainting_model = gr.Dropdown(label="Engine",choices=ENGINE_MODELS,value='stable-diffusion-xl-beta-v2-2-2')
with gr.Column():
inpainting_mask = gr.Image()
inpainting_op = gr.Image()
inpainting_cfg = gr.Slider(label="CFG Scale",mimimum=0,maximum=8,value=7.0,step=1,info="This dictates how closely the engine attempts to match a generation to the provided prompt.")
gr.HTML(value="<img id='inpainting' src='https://i.ibb.co/tMPPVTL/inpainting.png' alt='Generate knowlwdge graph' width='1200' height='300' style='border: 2px solid #fff;'/>")
gr.HTML(value="<style>#inpainting:hover{box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24),0 17px 50px 0 rgba(0,0,0,0.19);}</style>")
with gr.Row():
with gr.Column():
inpainting_button = gr.Button("Transform",elem_id="gradio_button")
with gr.Column():
inpainting_button_next = gr.Button("Use this Image as next",elem_id="gradio_button")
# op2 = gr.Image()
inpainting_image.select(fn=generate_mask,inputs=[inpainting_image],outputs=inpainting_mask)
depth2image_op.select(fn=generate_mask,inputs=[depth2image_op],outputs=inpainting_mask)
inpainting_button.click(fn=inpainting,inputs=[inpainting_prompt,inpainting_image,inpainting_mask,inpainting_guidnace_model,inpainting_cfg,inpainting_model ],outputs=[inpainting_op])
depth2image_nxt_button.click(fn=inpainting_use_for_next,inputs=[depth2image_op],outputs=[inpainting_image])
##################################################################################################################################################################
# with gr.Accordion(""):
# with gr.Row():
# with gr.Column():
# inpainting_prompt = gr.Textbox(label="Prompt for inpainting")
# inpainting_image = gr.Image()#type="pil",tool="sketch")
# with gr.Column():
# inpainting_mask = gr.Image()
# inpainting_op = gr.Image()
# inpainting_guidnace_model = gr.Dropdown(value='ViT-L-14--laion400m_e32',choices=GUIDANCE_MODELS)
# # op2 = gr.Image()
# inpainting_image.select(fn=generate_mask,inputs=[inpainting_image],outputs=inpainting_mask)
# inpainting_button = gr.Button("Transform")
# inpainting_button.click(fn=inpainting,inputs=[inpainting_prompt,inpainting_image,inpainting_mask,inpainting_guidnace_model ],outputs=[inpainting_op])
############################
with gr.Accordion("Image Search"):
with gr.Row():
with gr.Column():
search_image = gr.Image()
with gr.Column():
search_image_mask = gr.Image(interactive=False)
# with gr.Column():
# cropped_image = gr.Image()
search_op = gr.Dataframe()
gr.HTML(value="<img id='image_search' src='https://i.ibb.co/qpZNSkb/image-Search.png' alt='Generate knowlwdge graph' width='1200' height='300' style='border: 2px solid #fff;'/>")
gr.HTML(value="<style>#image_search:hover{box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24),0 17px 50px 0 rgba(0,0,0,0.19);}</style>")
search_button = gr.Button("Search",elem_id="gradio_button")
search_image.select(fn=generate_mask,inputs=[search_image],outputs=search_image_mask)
inpainting_op.select(fn=generate_mask,inputs=[inpainting_op],outputs=search_image_mask)
search_button.click(fn=crop_image,inputs=[search_image,search_image_mask],outputs=[search_op])
inpainting_button_next.click(fn=inpainting_use_for_next,inputs=[inpainting_op],outputs=[search_image])
demo.queue(concurrency_count=3,max_size=2)
demo.launch(debug=True) |