File size: 11,858 Bytes
2255e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d2ce43
 
2255e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0479d
2255e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc9ae1a
2255e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import time
import re
import pathlib

import requests
import openai
from embedchain import App
from serpapi import GoogleSearch
from pptx import Presentation
from pptx.util import Inches

from pptx import Presentation
from pptx.util import Inches, Pt
import gradio as gr

import torch

from PIL import Image
import qrcode
from pathlib import Path
from multiprocessing import cpu_count
import requests
import io
import os
from PIL import Image


from diffusers import (
    StableDiffusionControlNetPipeline,
    ControlNetModel,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    DEISMultistepScheduler,
    HeunDiscreteScheduler,
    EulerDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
)


openai.api_key = os.environ['OPENAI_API_KEY']
def gpt(user_prompt: str) -> str:
    response = openai.Completion.create(
      model="text-davinci-003",
      prompt=user_prompt,
      temperature=0,
      max_tokens=200,
      top_p=1,
      frequency_penalty=0,
      presence_penalty=0)
    return response["choices"][0]["text"]

def get_results(query:str, topic:str,index=0)->list[str]:
  combined_q = gpt(f'combine these "{query}" + "{topic}" words  and generate one heading')
  print(f'{query = }, {topic = }, {combined_q = }')
  
  try:
    params = {
    "engine": "google",
    "q": combined_q,
    "api_key": os.environ[f'SERPAPI_API_KEY{index}']
    }
    search = GoogleSearch(params)
    results = search.get_dict()
  except Exception as e:
    print(e)
    get_results(query, topic,index=index+1)



  organic_results = results["organic_results"]
  return organic_results

def extract_points(query:str, topic:str)->list[str]:
  # print('--Sleep--')
  time.sleep(60)
  organic_results = get_results(query, topic)
  embd_chain = App()
  for index, dct in enumerate(organic_results):
    try:
      embd_chain.add('web_page',dct['link'])
    except requests.exceptions.SSLError:
      continue
    except openai.error.RateLimitError:
      break
  print('--sleep--')
  time.sleep(60)
  embd_chain_q = embd_chain.query(f'highlight 7 important points')

  return 
# Add the title slide

def add_slide(prs, title, content, title_font_size=Pt(36), content_font_size=Pt(18)):
    slide_layout = prs.slide_layouts[1]  # Use the layout for "Title and Content"
    slide = prs.slides.add_slide(slide_layout)

    # Set the title and content text
    slide.shapes.title.text = title
    text_box = slide.placeholders[1]
    text_box.text = content

    # Change the font size for title and content text
    title_text_frame = slide.shapes.title.text_frame
    content_text_frame = text_box.text_frame
    for paragraph in title_text_frame.paragraphs:
        for run in paragraph.runs:
            run.font.size = title_font_size

    for paragraph in content_text_frame.paragraphs:
        for run in paragraph.runs:
            run.font.size = content_font_size


def add_title_slide(prs, title, title_font_size=Pt(44)):
    slide_layout = prs.slide_layouts[0]  # Use the layout for "Title Slide"
    slide = prs.slides.add_slide(slide_layout)

    # Set the title and subtitle text
    slide.shapes.title.text = title


    # Change the font size for title and subtitle text
    title_text_frame = slide.shapes.title.text_frame
    
    for paragraph in title_text_frame.paragraphs:
        for run in paragraph.runs:
            run.font.size = title_font_size


def main(user_query:str)->dict[str, str]:
  res = gpt(f'You are assisting me in creating a presentation on "{user_query}" Please generate 5 informative side headings for the slides. Each heading should be concise and reflect a key aspect of the topic.')
  topics = re.sub(r'[\d.]','',res.strip()).split('\n')
  print(f'{topics = }')
  ppt_points = { topic: extract_points(topic, user_query)
            for topic in topics}
  prs = Presentation()
  add_title_slide(prs,user_query, title_font_size=Pt(44))

  # Data for content slides
  
  # Adding each key-value pair as a slide in the presentation with custom font sizes
  for key, value in ppt_points.items():
      add_slide(prs, key, value, title_font_size=Pt(36), content_font_size=Pt(18))

  # Save the presentation
  prs.save(f'{user_query}.pptx')

  return f'{user_query}.pptx'

controlnet = ControlNetModel.from_pretrained(
    "monster-labs/control_v1p_sd15_qrcode_monster", 
    torch_dtype=torch.float16

).to('cpu')

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    controlnet=controlnet,
    safety_checker=None,
    torch_dtype=torch.float16
    
    
)


SAMPLER_MAP = {
    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
    "DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
    "Heun": lambda config: HeunDiscreteScheduler.from_config(config),
    "Euler a": lambda config: EulerAncestralDiscreteScheduler.from_config(config),
    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
    "DDIM": lambda config: DDIMScheduler.from_config(config),
    "DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}


def create_code(content: str):
    qr = qrcode.QRCode(
        version=1,
        error_correction=qrcode.constants.ERROR_CORRECT_H,
        box_size=16,
        border=0,
    )
    qr.add_data(content)
    qr.make(fit=True)
    img = qr.make_image(fill_color="black", back_color="white")

    # find smallest image size multiple of 256 that can fit qr
    offset_min = 8 * 16
    w, h = img.size
    w = (w + 255 + offset_min) // 256 * 256
    h = (h + 255 + offset_min) // 256 * 256
    if w > 1024:
        raise gr.Error("QR code is too large, please use a shorter content")
    bg = Image.new('L', (w, h), 128)

    # align on 16px grid
    coords = ((w - img.size[0]) // 2 // 16 * 16,
              (h - img.size[1]) // 2 // 16 * 16)
    bg.paste(img, coords)
    return bg


def inference(
    qr_code_content: str,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float = 10.0,
    controlnet_conditioning_scale: float = 2.0,
    seed: int = -1,
    sampler="Euler a",
):


    pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)

    generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()

    print("Generating QR Code from content")
    qrcode_image = create_code(qr_code_content)

    # hack due to gradio examples
    init_image = qrcode_image

    out = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=qrcode_image,
        width=qrcode_image.width,
        height=qrcode_image.height,
        guidance_scale=float(guidance_scale),
        controlnet_conditioning_scale=float(controlnet_conditioning_scale),
        
        num_inference_steps=40,
    )
    return out.images[0]

import gradio as gr


with gr.Blocks() as demo:
  with gr.Tab('Presentation'):
    with gr.Row():
      with gr.Column():
        txt = gr.Textbox(label="Your Query")
      with gr.Column():
        file = gr.File()

    btn = gr.Button('Create Presentation')

    
    btn.click(main, txt, file)
  with gr.Tab('QR Code'):
    gr.Markdown('This feature needs GPU to run')
    with gr.Row():
        with gr.Column():
            qr_code_content = gr.Textbox(
                label="QR Code Content or URL",
                info="The text you want to encode into the QR code",
                value="",
            )

            prompt = gr.Textbox(
                label="Prompt",
                info="Prompt that guides the generation towards",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="ugly, disfigured, low quality, blurry, nsfw",
                info="Prompt that guides the generation away from",
            )

            with gr.Accordion(
                label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below",
                open=True,
            ):
                controlnet_conditioning_scale = gr.Slider(
                    minimum=0.5,
                    maximum=2.5,
                    step=0.01,
                    value=1.5,
                    label="Controlnet Conditioning Scale",
                    info="""Controls the readability/creativity of the QR code.
                    High values: The generated QR code will be more readable.
                    Low values: The generated QR code will be more creative.
                    """
                )
                guidance_scale = gr.Slider(
                    minimum=0.0,
                    maximum=25.0,
                    step=0.25,
                    value=7,
                    label="Guidance Scale",
                    info="Controls the amount of guidance the text prompt guides the image generation"
                )
                sampler = gr.Dropdown(choices=list(
                    SAMPLER_MAP.keys()), value="Euler a", label="Sampler")
                seed = gr.Number(
                    minimum=-1,
                    maximum=9999999999,
                    step=1,
                    value=2313123,
                    label="Seed",
                    randomize=True,
                    info="Seed for the random number generator. Set to -1 for a random seed"
                )
            with gr.Row():
                run_btn = gr.Button("Run")
        with gr.Column():
            result_image = gr.Image(label="Result Image", elem_id="result_image")
    run_btn.click(
        inference,
        inputs=[
            qr_code_content,
            prompt,
            negative_prompt,
            guidance_scale,
            controlnet_conditioning_scale,
            seed,
            sampler,
        ],
        outputs=[result_image],
    )

    gr.Examples(
        examples=[
            [
                "test",
                "Baroque rococo architecture, architectural photography, post apocalyptic New York, hyperrealism, [roots], hyperrealistic, octane render, cinematic, hyper detailed, 8K",
                "",
                7,
                1.6,
                2592353769,
                "Euler a",
            ],
            [
                "https://qrcodemonster.art",
                "a centered render of an ancient tree covered in bio - organic micro organisms growing in a mystical setting, cinematic, beautifully lit, by tomasz alen kopera and peter mohrbacher and craig mullins, 3d, trending on artstation, octane render, 8k",
                "",
                7,
                1.57,
                259235398,
                "Euler a",
            ],
            [
                "test",
                "3 cups of coffee with coffee beans around",
                "",
                7,
                1.95,
                1889601353,
                "Euler a",
            ],
            [
                "https://huggingface.co",
                "A top view picture of a sandy beach with a sand castle, beautiful lighting, 8k, highly detailed",
                "sky",
                7,
                1.15,
                46200,
                "Euler a",
            ],
            [
                "test",
                "A top view picture of a sandy beach, organic shapes, beautiful lighting, bumps and shadows, 8k, highly detailed",
                "sky, water, squares",
                7,
                1.25,
                46220,
                "Euler a",
            ],
        ],
        fn=inference,
        inputs=[
            qr_code_content,
            prompt,
            negative_prompt,
            guidance_scale,
            controlnet_conditioning_scale,
            seed,
            sampler,
        ],
        outputs=[result_image],
        
    )



demo.launch(debug=True)