Spaces:
Runtime error
Runtime error
File size: 11,858 Bytes
2255e63 2d2ce43 2255e63 2a0479d 2255e63 dc9ae1a 2255e63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os
import time
import re
import pathlib
import requests
import openai
from embedchain import App
from serpapi import GoogleSearch
from pptx import Presentation
from pptx.util import Inches
from pptx import Presentation
from pptx.util import Inches, Pt
import gradio as gr
import torch
from PIL import Image
import qrcode
from pathlib import Path
from multiprocessing import cpu_count
import requests
import io
import os
from PIL import Image
from diffusers import (
StableDiffusionControlNetPipeline,
ControlNetModel,
DDIMScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
HeunDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
)
openai.api_key = os.environ['OPENAI_API_KEY']
def gpt(user_prompt: str) -> str:
response = openai.Completion.create(
model="text-davinci-003",
prompt=user_prompt,
temperature=0,
max_tokens=200,
top_p=1,
frequency_penalty=0,
presence_penalty=0)
return response["choices"][0]["text"]
def get_results(query:str, topic:str,index=0)->list[str]:
combined_q = gpt(f'combine these "{query}" + "{topic}" words and generate one heading')
print(f'{query = }, {topic = }, {combined_q = }')
try:
params = {
"engine": "google",
"q": combined_q,
"api_key": os.environ[f'SERPAPI_API_KEY{index}']
}
search = GoogleSearch(params)
results = search.get_dict()
except Exception as e:
print(e)
get_results(query, topic,index=index+1)
organic_results = results["organic_results"]
return organic_results
def extract_points(query:str, topic:str)->list[str]:
# print('--Sleep--')
time.sleep(60)
organic_results = get_results(query, topic)
embd_chain = App()
for index, dct in enumerate(organic_results):
try:
embd_chain.add('web_page',dct['link'])
except requests.exceptions.SSLError:
continue
except openai.error.RateLimitError:
break
print('--sleep--')
time.sleep(60)
embd_chain_q = embd_chain.query(f'highlight 7 important points')
return
# Add the title slide
def add_slide(prs, title, content, title_font_size=Pt(36), content_font_size=Pt(18)):
slide_layout = prs.slide_layouts[1] # Use the layout for "Title and Content"
slide = prs.slides.add_slide(slide_layout)
# Set the title and content text
slide.shapes.title.text = title
text_box = slide.placeholders[1]
text_box.text = content
# Change the font size for title and content text
title_text_frame = slide.shapes.title.text_frame
content_text_frame = text_box.text_frame
for paragraph in title_text_frame.paragraphs:
for run in paragraph.runs:
run.font.size = title_font_size
for paragraph in content_text_frame.paragraphs:
for run in paragraph.runs:
run.font.size = content_font_size
def add_title_slide(prs, title, title_font_size=Pt(44)):
slide_layout = prs.slide_layouts[0] # Use the layout for "Title Slide"
slide = prs.slides.add_slide(slide_layout)
# Set the title and subtitle text
slide.shapes.title.text = title
# Change the font size for title and subtitle text
title_text_frame = slide.shapes.title.text_frame
for paragraph in title_text_frame.paragraphs:
for run in paragraph.runs:
run.font.size = title_font_size
def main(user_query:str)->dict[str, str]:
res = gpt(f'You are assisting me in creating a presentation on "{user_query}" Please generate 5 informative side headings for the slides. Each heading should be concise and reflect a key aspect of the topic.')
topics = re.sub(r'[\d.]','',res.strip()).split('\n')
print(f'{topics = }')
ppt_points = { topic: extract_points(topic, user_query)
for topic in topics}
prs = Presentation()
add_title_slide(prs,user_query, title_font_size=Pt(44))
# Data for content slides
# Adding each key-value pair as a slide in the presentation with custom font sizes
for key, value in ppt_points.items():
add_slide(prs, key, value, title_font_size=Pt(36), content_font_size=Pt(18))
# Save the presentation
prs.save(f'{user_query}.pptx')
return f'{user_query}.pptx'
controlnet = ControlNetModel.from_pretrained(
"monster-labs/control_v1p_sd15_qrcode_monster",
torch_dtype=torch.float16
).to('cpu')
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
)
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
"Heun": lambda config: HeunDiscreteScheduler.from_config(config),
"Euler a": lambda config: EulerAncestralDiscreteScheduler.from_config(config),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
"DDIM": lambda config: DDIMScheduler.from_config(config),
"DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}
def create_code(content: str):
qr = qrcode.QRCode(
version=1,
error_correction=qrcode.constants.ERROR_CORRECT_H,
box_size=16,
border=0,
)
qr.add_data(content)
qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color="white")
# find smallest image size multiple of 256 that can fit qr
offset_min = 8 * 16
w, h = img.size
w = (w + 255 + offset_min) // 256 * 256
h = (h + 255 + offset_min) // 256 * 256
if w > 1024:
raise gr.Error("QR code is too large, please use a shorter content")
bg = Image.new('L', (w, h), 128)
# align on 16px grid
coords = ((w - img.size[0]) // 2 // 16 * 16,
(h - img.size[1]) // 2 // 16 * 16)
bg.paste(img, coords)
return bg
def inference(
qr_code_content: str,
prompt: str,
negative_prompt: str,
guidance_scale: float = 10.0,
controlnet_conditioning_scale: float = 2.0,
seed: int = -1,
sampler="Euler a",
):
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
print("Generating QR Code from content")
qrcode_image = create_code(qr_code_content)
# hack due to gradio examples
init_image = qrcode_image
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=qrcode_image,
width=qrcode_image.width,
height=qrcode_image.height,
guidance_scale=float(guidance_scale),
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
num_inference_steps=40,
)
return out.images[0]
import gradio as gr
with gr.Blocks() as demo:
with gr.Tab('Presentation'):
with gr.Row():
with gr.Column():
txt = gr.Textbox(label="Your Query")
with gr.Column():
file = gr.File()
btn = gr.Button('Create Presentation')
btn.click(main, txt, file)
with gr.Tab('QR Code'):
gr.Markdown('This feature needs GPU to run')
with gr.Row():
with gr.Column():
qr_code_content = gr.Textbox(
label="QR Code Content or URL",
info="The text you want to encode into the QR code",
value="",
)
prompt = gr.Textbox(
label="Prompt",
info="Prompt that guides the generation towards",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="ugly, disfigured, low quality, blurry, nsfw",
info="Prompt that guides the generation away from",
)
with gr.Accordion(
label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below",
open=True,
):
controlnet_conditioning_scale = gr.Slider(
minimum=0.5,
maximum=2.5,
step=0.01,
value=1.5,
label="Controlnet Conditioning Scale",
info="""Controls the readability/creativity of the QR code.
High values: The generated QR code will be more readable.
Low values: The generated QR code will be more creative.
"""
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=25.0,
step=0.25,
value=7,
label="Guidance Scale",
info="Controls the amount of guidance the text prompt guides the image generation"
)
sampler = gr.Dropdown(choices=list(
SAMPLER_MAP.keys()), value="Euler a", label="Sampler")
seed = gr.Number(
minimum=-1,
maximum=9999999999,
step=1,
value=2313123,
label="Seed",
randomize=True,
info="Seed for the random number generator. Set to -1 for a random seed"
)
with gr.Row():
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Result Image", elem_id="result_image")
run_btn.click(
inference,
inputs=[
qr_code_content,
prompt,
negative_prompt,
guidance_scale,
controlnet_conditioning_scale,
seed,
sampler,
],
outputs=[result_image],
)
gr.Examples(
examples=[
[
"test",
"Baroque rococo architecture, architectural photography, post apocalyptic New York, hyperrealism, [roots], hyperrealistic, octane render, cinematic, hyper detailed, 8K",
"",
7,
1.6,
2592353769,
"Euler a",
],
[
"https://qrcodemonster.art",
"a centered render of an ancient tree covered in bio - organic micro organisms growing in a mystical setting, cinematic, beautifully lit, by tomasz alen kopera and peter mohrbacher and craig mullins, 3d, trending on artstation, octane render, 8k",
"",
7,
1.57,
259235398,
"Euler a",
],
[
"test",
"3 cups of coffee with coffee beans around",
"",
7,
1.95,
1889601353,
"Euler a",
],
[
"https://huggingface.co",
"A top view picture of a sandy beach with a sand castle, beautiful lighting, 8k, highly detailed",
"sky",
7,
1.15,
46200,
"Euler a",
],
[
"test",
"A top view picture of a sandy beach, organic shapes, beautiful lighting, bumps and shadows, 8k, highly detailed",
"sky, water, squares",
7,
1.25,
46220,
"Euler a",
],
],
fn=inference,
inputs=[
qr_code_content,
prompt,
negative_prompt,
guidance_scale,
controlnet_conditioning_scale,
seed,
sampler,
],
outputs=[result_image],
)
demo.launch(debug=True)
|