Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModel | |
from datetime import datetime | |
import torch | |
import pickle | |
#Mean Pooling - Take attention mask into account for correct averaging | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) | |
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
return sum_embeddings / sum_mask | |
def calculateEmbeddings(sentences,tokenizer,model): | |
tokenized_sentences = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') | |
with torch.no_grad(): | |
model_output = model(**tokenized_sentences) | |
sentence_embeddings = mean_pooling(model_output, tokenized_sentences['attention_mask']) | |
return sentence_embeddings | |
def saveToDisc(embeddings, filename): | |
with open(filename, "ab") as f: | |
pickle.dump(embeddings, f, protocol=pickle.HIGHEST_PROTOCOL) | |
def saveToDisc(sentences, embeddings, filename): | |
with open(filename, "ab") as f: | |
pickle.dump({'sentences': sentences, 'embeddings': embeddings}, f, protocol=pickle.HIGHEST_PROTOCOL) | |
dt = datetime.now() | |
datetime_formatted = dt.strftime('%Y-%m-%d_%H:%M:%S') | |
batch_size = 1000 | |
input_text_file = 'data/processed/shortened_abstracts_hu_2021_09_01.txt' | |
output_embeddings_file = f'data/processed/embeddings_{batch_size}_batches_at_{datetime_formatted}.pkl' | |
multilingual_checkpoint = 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2' | |
tokenizer = AutoTokenizer.from_pretrained(multilingual_checkpoint) | |
model = AutoModel.from_pretrained(multilingual_checkpoint) | |
total_read = 0 | |
total_read_limit = 3 * batch_size | |
with open(input_text_file) as f: | |
while total_read < total_read_limit: | |
count = 0 | |
sentences = [] | |
line = 'init' | |
while line and count < batch_size: | |
line = f.readline() | |
sentences.append(line) | |
count += 1 | |
sentence_embeddings = calculateEmbeddings(sentences,tokenizer,model) | |
saveToDisc(sentences, sentence_embeddings,output_embeddings_file) | |
total_read += count |