Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,517 Bytes
0fa20f6 4722d2a 0a2ac2e 0fa20f6 256f531 0fa20f6 568bc84 0fa20f6 3c042eb 0fa20f6 b3ea40b 0fa20f6 b3ea40b 0fa20f6 b3ea40b 0fa20f6 b3ea40b 0fa20f6 91deaa2 0fa20f6 91deaa2 0fa20f6 e0d34c8 0fa20f6 e0d34c8 0fa20f6 0224173 98cf3fb 0fa20f6 7925e97 0fa20f6 4722d2a 0fa20f6 4722d2a 0fa20f6 4722d2a 0fa20f6 4722d2a 0fa20f6 4722d2a 0fa20f6 d4e9aca 0fa20f6 4722d2a 0fa20f6 4722d2a 0fa20f6 7591e86 4722d2a 0fa20f6 4722d2a 0fa20f6 4722d2a 0fa20f6 4722d2a 0fa20f6 e0d34c8 0fa20f6 b966990 0fa20f6 4722d2a 0fa20f6 f158243 0fa20f6 997d449 4722d2a 0fa20f6 7925e97 0fa20f6 4722d2a 0fa20f6 7925e97 0fa20f6 4722d2a 0fa20f6 4722d2a 0fa20f6 4722d2a dbe8192 4722d2a 0fa20f6 4722d2a 0fa20f6 4722d2a 3c042eb 0fa20f6 4722d2a 0fa20f6 4722d2a 0fa20f6 4722d2a 0fa20f6 0c388a7 0fa20f6 d4e9aca 4722d2a 0fa20f6 9a01cc0 4722d2a 9a01cc0 3a73b68 0fa20f6 9a01cc0 0fa20f6 9a01cc0 6588a92 9a01cc0 0fa20f6 9a01cc0 0fa20f6 256f531 b6de3f2 4722d2a b6de3f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
import argparse
import datetime
import json
import os
import time
import hashlib
import uuid
import traceback
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
logging.getLogger("http").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
import spaces
import gradio as gr
from conversation_public import default_conversation, conv_templates, SeparatorStyle
auth_token = os.environ.get("TOKEN_FROM_SECRET")
##########################################
# Audio part
##########################################
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Emova-ollm/emova_speech_tokenizer", local_dir='./emova_speech_tokenizer', token=auth_token)
from emova_speech_tokenizer.emova_speech_tokenizer.speech_utils import get_S2U_ckpt_config_path, load_S2U_model, s2u_extract_unit_demo
from emova_speech_tokenizer.emova_speech_tokenizer.speech_utils import load_condition_centroid, get_U2S_config_checkpoint_file, load_U2S_model, synthesis
####################
# S2U
####################
reduced=True
reduced_mark = 'reduced' if reduced else 'unreduced'
unit_type = '40ms_multilingual_8888'
language = 'English'
s2u_model_name = 'SPIRAL-FSQ-CTC'
ckpt_path, config_path = get_S2U_ckpt_config_path(unit_type, language)
s2u_model = load_S2U_model(ckpt_path, config_path, s2u_model_name).cuda()
####################
# U2S
####################
condition2style_centroid_file = "./speech_tokenization/condition_style_centroid/condition2style_centroid.txt"
condition2style_centroid_file_dict, condition2style_centroid_embedding_dict = load_condition_centroid(condition2style_centroid_file)
unit_type = '40ms_multilingual_8888_xujing_cosyvoice_FT'
language = 'Chinese'
model_config_file, model_checkpoint_file = get_U2S_config_checkpoint_file(unit_type, language)
net_g, hps = load_U2S_model(model_config_file, model_checkpoint_file, unit_type)
net_g = net_g.cuda()
####################
# task format
####################
asr_format = "Please recognize the text corresponding to the follwing speech.\n"
tts_format = "Please synthesize the speech corresponding to the follwing text.\n"
chat_format = r'Please recognize the texts, emotion and pitch from the user question speech units and provide the texts, emotion, pitch and speech units for the assistant response. \nEmotion should be chosen from ["neutral", "happy", "sad", "angry", "surprised", "disgusted", "fearful"]. \nPitch should be chosen from ["low", "normal", "high"].\nYour output should be in json format.\nAn output example is:\n{"user question text": "", "user question emotion": "", "user question pitch": "", "assistant response text": "", "assistant response emotion": "", "assistant response pitch": ""οΌ"assistant response speech": ""}\n\nuser question speech:'
@spaces.GPU(duration=10)
def s2u_asr(text, audio_file):
return asr_format + s2u_extract_unit_demo(s2u_model, audio_file, model_name=s2u_model_name, reduced=reduced)
@spaces.GPU(duration=10)
def s2u_chat(text, audio_file):
return chat_format + s2u_extract_unit_demo(s2u_model, audio_file, model_name=s2u_model_name, reduced=reduced)
def u2s_tts(text, audio_file):
return tts_format + text
mode2func = dict(
asr=s2u_asr,
chat=s2u_chat,
tts=u2s_tts,
)
##########################################
# LLM part
##########################################
import torch
from transformers import AutoModel, AutoProcessor, TextIteratorStreamer
from threading import Thread
model_name = "Emova-ollm/emova-qwen-2-5-7b-hf"
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
attn_implementation='flash_attention_2',
low_cpu_mem_usage=True,
trust_remote_code=True, token=auth_token).eval().cuda()
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True, token=auth_token)
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
def stream_response(model, inputs, streamer, prompt, gen_kwargs):
thread = Thread(target=model.generate, kwargs=dict(
streamer=streamer,
**inputs,
**gen_kwargs
))
thread.start()
generated_text = prompt
for new_text in streamer:
generated_text += new_text
yield generated_text
##########################################
# Gradio part
##########################################
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
server_oom_msg = "**OUT OF GPU MEMORY DETECTED. PLEASE DECREASE THE MAX OUTPUT TOKENS AND REGENERATE.**"
def load_demo_refresh_model_list():
logging.info(f"load_demo.")
state = default_conversation.copy()
return state
def regenerate(state, image_process_mode):
logging.info(f"regenerate.")
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode, *prev_human_msg[1][3:])
state.skip_next = False
return (state, state.to_gradio_chatbot_public(), "", None, None) + (disable_btn,) * 2
def clear_history():
logging.info(f"clear_history.")
state = default_conversation.copy()
return (state, state.to_gradio_chatbot_public(), "", None) + (disable_btn,) * 2 + (None,)
############
# Show prompt in the chatbot
# Input: [state, textbox, imagebox, image_process_mode, audio_input, audio_mode]
# Return: [state, chatbot, textbox, imagebox, audio_input] + btn_list
############
def add_text(state, text, image, image_process_mode, audio_input, audio_mode):
############
# Input legality checking
############
logging.info(f"add_text. len: {len(text)}")
if len(text) <= 0 and image is None and audio_input is None:
state.skip_next = True
return (state, state.to_gradio_chatbot_public(), "", None, None) + (no_change_btn,) * 2
############
# Re-initialize if having conducted audio conversations
############
for i, (role, msg) in enumerate(state.messages[state.offset:]):
if isinstance(msg, tuple) and msg[-1] is not None:
state = default_conversation.copy()
break
############
# Deal with image inputs
############
if image is not None:
if '<image>' not in text:
text = text + '\n<image>'
text = (text, image, image_process_mode, None)
state = default_conversation.copy()
############
# Deal with audio inputs
############
if audio_input is not None or audio_mode == 'tts':
if isinstance(text, tuple):
if audio_mode == 'chat':
prompt = mode2func[audio_mode](text[0][:-len("\n<image>")], audio_input)
text = (prompt + "\n<image>", text[1], text[2], audio_input)
elif audio_mode == 'tts':
prompt = mode2func[audio_mode](text[0][:-len("\n<image>")], audio_input)
text = (prompt, None, None, None)
else:
prompt = mode2func[audio_mode](text, audio_input)
text = (prompt, None, None, audio_input)
else:
prompt = mode2func[audio_mode](text, audio_input)
text = (prompt, None, None, audio_input)
state = default_conversation.copy()
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
logging.info(str(state.messages))
return (state, state.to_gradio_chatbot_public(), "", None, None) + (disable_btn,) * 2
############
# Get response
# Input: [state, temperature, top_p, max_output_tokens, speaker]
# Return: [state, chatbot] + btn_list
############
@spaces.GPU
def http_bot(state, temperature, top_p, max_new_tokens, speaker):
logging.info(f"http_bot.")
if state.skip_next:
yield (state, state.to_gradio_chatbot_public()) + (no_change_btn,) * 2
return
if len(state.messages) == state.offset + 2:
# First round of conversation
if "llama3" in model_name.lower():
template_name = 'llama3_demo'
elif "qwen-2" in model_name.lower():
template_name = 'qwen2_demo'
else:
template_name = "default"
new_state = conv_templates[template_name].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
# Construct prompt
prompt = state.get_prompt()
all_images = state.get_images(return_pil=True)
# Make requests
pload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": int(max_new_tokens),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_images}',
}
logging.info(f"==== request ====\n{pload}")
# Process inputs
inputs = processor(text=[prompt], images=all_images if len(all_images) > 0 else None, return_tensors="pt")
inputs.to(model.device)
# if len(all_images) > 0:
# inputs['pixel_values'] = inputs['pixel_values'].to(model.dtype)
# Process hyperparameters
temperature = float(pload.get("temperature", 1.0))
top_p = float(pload.get("top_p", 1.0))
stop_str = pload.get("stop", None)
do_sample = True if temperature > 0.001 else False
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = int(pload.get("max_new_tokens", 256))
max_new_tokens = min(max_new_tokens, max_context_length - inputs['input_ids'].shape[1])
gen_kwargs = dict(
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
use_cache=True,
)
if max_new_tokens < 1:
state.messages[-1][-1] = "Exceeds max token length. Please start a new conversation, thanks."
yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
return
state.messages[-1][-1] = "β"
yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
# Stream output
try:
for generated_text in stream_response(model, inputs, streamer, prompt, gen_kwargs):
output = generated_text[len(prompt):].strip()
if tts_format not in prompt and chat_format not in prompt:
state.messages[-1][-1] = output + "β"
else:
state.messages[-1][-1] = output + "β"
# state.messages[-1][-1] = "β"
# state.messages[-1][-1] = "[π GENERATING AUDIO {}%...]".format(round(output.count("<|speech_") / max_new_tokens * 100, 1)) + "\n" + output + "β"
yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
except Exception as e:
os.system("nvidia-smi")
logging.info(traceback.print_exc())
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
return
################
# decode output to audio
################
temp_file = None
if tts_format in prompt or chat_format in prompt:
try:
try:
if output.startswith("{"):
if output.endswith("|>"):
output += "\"}"
elif output.endswith("\""):
output += "}"
info_dict = json.loads(output)
content_unit = info_dict['assistant response speech'].replace('<|speech_', '').replace('|>', ' ').strip()
emotion = info_dict['assistant response emotion'] if 'assistant response emotion' in info_dict else "neutral"
speed = info_dict['assistant response speed'] if 'assistant response speed' in info_dict else "normal"
pitch = info_dict['assistant response pitch'] if 'assistant response pitch' in info_dict else "normal"
gender = speaker.lower() if speaker else 'female'
except:
content_unit = output.replace('<|speech_', '').replace('|>', ' ').strip()
emotion = 'neutral'
speed = "normal"
pitch = "normal"
gender = speaker.lower() if speaker else 'female'
condition = f'gender-{gender}_emotion-{emotion}_speed-{speed}_pitch-{pitch}'
style_centroid_file = condition2style_centroid_file_dict[condition]
style_centroid_embedding = condition2style_centroid_embedding_dict[condition].cuda()
logging.info(condition)
id = str(uuid.uuid4())
os.makedirs("./demo_audio", exist_ok=True)
synthesis(content_unit, style_centroid_embedding, hps, net_g, f"./demo_audio/{id}_temp_audio.wav")
temp_file = f"./demo_audio/{id}_temp_audio.wav"
except Exception as e:
os.system("nvidia-smi")
logging.info(traceback.print_exc())
state.messages[-1][-1] = state.messages[-1][-1][:-1]
if tts_format in prompt or chat_format in prompt:
if temp_file is not None:
state.messages[-1][-1] = (output, temp_file)
yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
else:
state.messages[-1][-1] = server_oom_msg
yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
else:
yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
if temp_file is not None:
os.system("rm {}".format(temp_file))
logging.info(f"{output}")
############
# Layout Markdown
############
title_markdown = ("""
<div style="display: flex; align-items: center; padding: 20px; border-radius: 10px; background-color: #f0f0f0;">
<div style="margin-left: 20px; margin-right: 40px;">
<img src="https://emova-ollm.github.io/static/images/icons/emova.png" alt="Icon" style="width: 100px; height: 100px; border-radius: 10px;">
</div>
<div>
<h1 style="margin: 0;">EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions</h1>
<h2 style="margin: 10px 0;">π <a href="https://arxiv.org/abs/2409.18042" style="font-weight: 400;">Paper</a> | π» <a href="https://github.com/emova-ollm/EMOVA" style="font-weight: 400;">Code</a> | π€ <a href="https://huggingface.co/Emova-ollm" style="font-weight: 400;">HuggingFace</a> | π <a href="https://emova-ollm.github.io/" style="font-weight: 400;">Website</a></h2>
<p style="margin: 20px 0;">
<strong>1. To chat with EMOVA, upload images, enter texts or record audios and then do not forget to <mark>Click π¬ Chat Button</mark> ^v^!</strong><br/>
<strong>2. Heighten the <code>Max output tokens</code> if necessary to talk longer with EMOVA.</strong>
</p>
</div>
</div>
""")
tos_markdown = ("""
## Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
## License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/QwenLM/Qwen/blob/main/LICENSE) of Qwen and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
## Acknowledgement
The service is built upon [LLaVA](https://github.com/haotian-liu/LLaVA/). We thanks the authors for open-sourcing the wonderful code.
## Citation
<pre><code>@article{chen2024emova,
title={Emova: Empowering language models to see, hear and speak with vivid emotions},
author={Chen, Kai and Gou, Yunhao and Huang, Runhui and Liu, Zhili and Tan, Daxin and Xu, Jing and Wang, Chunwei and Zhu, Yi and Zeng, Yihan and Yang, Kuo and others},
journal={arXiv preprint arXiv:2409.18042},
year={2024}
}</code></pre>
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
.message-row img {
margin: 0px !important;
}
.avatar-container img {
padding: 0px !important;
}
"""
############
# Layout Demo
############
def build_demo(embed_mode):
textbox = gr.Textbox(label="Text", show_label=False, placeholder="Enter text or record audio in the right and then click π¬ Chat to talk with me ^v^", container=False, scale=6)
audio_input = gr.Audio(label="Audio", sources=["microphone", "upload"], type="filepath", max_length=10, show_download_button=True, waveform_options=dict(sample_rate=16000), scale=2)
with gr.Blocks(title="EMOVA", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
if not embed_mode:
gr.HTML(title_markdown)
##############
# Chatbot
##############
with gr.Row(equal_height=True):
with gr.Column(scale=1):
imagebox = gr.Image(type="pil", label="Image")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
##############
# Parameters
##############
with gr.Accordion("Parameters", open=True) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P")
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=32, interactive=True, label="Max output tokens")
speaker = gr.Radio(["Female", "Male"], value="Female", label="Speaker")
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="EMOVA Chatbot",
layout="bubble",
avatar_images=["examples/user_avator.png", "examples/icon_256.png"]
)
with gr.Row(equal_height=True):
textbox.render()
audio_input.render()
with gr.Row(elem_id="buttons") as button_row:
submit_btn = gr.Button(value="π¬ Chat", variant="primary")
#stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear", interactive=False)
##############
# Examples
##############
with gr.Row():
with gr.Column(scale=9):
gr.Examples(examples=[
["./examples/emo-speech/what_is_your_name.wav"],
["./examples/emo-speech/I_am_so_sad.wav"],
["./examples/emo-speech/parent.wav"],
["./examples/emo-speech/wedding(CH).wav"],
], inputs=[audio_input], label='Audio Examples (Click to load the examples~)')
with gr.Row(equal_height=True):
gr.Examples(examples=[
["./examples/image-text/example_1.png", "Why is this image funny?"],
["./examples/image-text/example_2.png", "First please perform reasoning, and think step by step to provide best answer to the following question:\n\nWhat is the original price for pork belly before discount?"],
["./examples/image-text/example_3.png", "Convert this table to markdown format."],
], inputs=[imagebox, textbox], label='Image Examples')
gr.Examples(examples=[
["./examples/emo-speech/write_a_poem.jfif", "./examples/emo-speech/write_a_poem.wav"],
["./examples/emo-speech/I_am_happy_get_my_offer.png", "./examples/emo-speech/I_am_happy_get_my_offer.wav"],
["./examples/structure-speech/names_of_main_actors.jpg", "./examples/structure-speech/names_of_main_actors.wav"],
], inputs=[imagebox, audio_input], label='Omni Examples 1')
gr.Examples(examples=[
["./examples/structure-speech/how_to_save_water.png", "./examples/structure-speech/how_to_save_water.wav"],
["./examples/structure-speech/internet_coverage.png", "./examples/structure-speech/internet_coverage.wav"],
["./examples/structure-speech/how_to_use_website.PNG", "./examples/structure-speech/how_to_use_website.wav"],
], inputs=[imagebox, audio_input], label='Omni Examples 2')
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
# Register listeners
btn_list = [regenerate_btn, clear_btn]
regenerate_btn.click(
regenerate,
[state, image_process_mode],
[state, chatbot, textbox, imagebox, audio_input] + btn_list
).then(
http_bot,
[state, temperature, top_p, max_output_tokens, speaker],
[state, chatbot] + btn_list,
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list + [audio_input],
queue=False
)
# probably mean press enter
textbox.submit(
add_text,
[state, textbox, imagebox, image_process_mode, audio_input, gr.Number(value='chat', visible=False)],
[state, chatbot, textbox, imagebox, audio_input] + btn_list,
queue=False
).then(
http_bot,
[state, temperature, top_p, max_output_tokens, speaker],
[state, chatbot] + btn_list,
)
submit_btn.click(
add_text,
[state, textbox, imagebox, image_process_mode, audio_input, gr.Number(value='chat', visible=False)],
[state, chatbot, textbox, imagebox, audio_input] + btn_list
).then(
http_bot,
[state, temperature, top_p, max_output_tokens, speaker],
[state, chatbot] + btn_list,
)
##############
# Demo loading
##############
demo.load(
load_demo_refresh_model_list,
None,
[state],
queue=False
)
return demo
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
demo = build_demo(args.embed)
demo.queue(
max_size=10,
api_open=False
).launch(
favicon_path="./examples/icon_256.png",
allowed_paths=["/"],
share=args.share
)
|