Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| # Load the fine-tuned model and tokenizer | |
| model_name = "EmTpro01/llama-3.2-Code-Generator" # Replace with your Hugging Face model name | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| # Define the prediction function | |
| def generate_code(prompt): | |
| # Tokenize the input | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| # Generate code | |
| outputs = model.generate(inputs["input_ids"], max_length=200, num_return_sequences=1) | |
| # Decode the output | |
| generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return generated_code | |
| # Set up Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Code Generation with Fine-Tuned Llama Model") | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Input Prompt", placeholder="Enter a prompt for code generation...") | |
| output = gr.Textbox(label="Generated Code") | |
| generate_button = gr.Button("Generate Code") | |
| generate_button.click(generate_code, inputs=prompt, outputs=output) | |
| # Launch the interface | |
| demo.launch() | |