Commit
·
c0f6432
1
Parent(s):
6e3fd26
Summary
Browse files- app.css +18 -2
- app.py +60 -7
- app/app_utils.py +87 -4
- app/config.py +10 -0
- app/description.py +12 -2
- app/face_utils.py +34 -0
- app/model.py +4 -1
- app/plot.py +29 -0
- config.toml +6 -2
- result.mp4 +0 -0
- videos/video1.mp4 +0 -0
- videos/video2.mp4 +0 -0
app.css
CHANGED
|
@@ -3,8 +3,8 @@ div.app-flex-container {
|
|
| 3 |
align-items: left;
|
| 4 |
}
|
| 5 |
|
| 6 |
-
div.app-flex-container >
|
| 7 |
-
margin-
|
| 8 |
}
|
| 9 |
|
| 10 |
div.dl1 div.upload-container {
|
|
@@ -20,6 +20,22 @@ div.dl2 img {
|
|
| 20 |
max-height: 200px;
|
| 21 |
}
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
.submit {
|
| 24 |
display: inline-block;
|
| 25 |
padding: 10px 20px;
|
|
|
|
| 3 |
align-items: left;
|
| 4 |
}
|
| 5 |
|
| 6 |
+
div.app-flex-container > a {
|
| 7 |
+
margin-left: 6px;
|
| 8 |
}
|
| 9 |
|
| 10 |
div.dl1 div.upload-container {
|
|
|
|
| 20 |
max-height: 200px;
|
| 21 |
}
|
| 22 |
|
| 23 |
+
div.video1 div.video-container {
|
| 24 |
+
height: 500px;
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
div.video2 {
|
| 28 |
+
height: 200px;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
div.video3 {
|
| 32 |
+
height: 200px;
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
div.stat {
|
| 36 |
+
height: 286px;
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
.submit {
|
| 40 |
display: inline-block;
|
| 41 |
padding: 10px 20px;
|
app.py
CHANGED
|
@@ -10,21 +10,52 @@ License: MIT License
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# Importing necessary components for the Gradio app
|
| 13 |
-
from app.description import
|
| 14 |
from app.authors import AUTHORS
|
| 15 |
-
from app.app_utils import
|
| 16 |
|
| 17 |
|
| 18 |
-
def
|
| 19 |
return (
|
| 20 |
gr.Image(value=None, type="pil"),
|
| 21 |
gr.Image(value=None, scale=1, elem_classes="dl2"),
|
| 22 |
gr.Label(value=None, num_top_classes=3, scale=1, elem_classes="dl3"),
|
| 23 |
)
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
with gr.Blocks(css="app.css") as demo:
|
| 26 |
-
with gr.Tab("App"):
|
| 27 |
-
gr.Markdown(value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
with gr.Row():
|
| 29 |
with gr.Column(scale=2, elem_classes="dl1"):
|
| 30 |
input_image = gr.Image(type="pil")
|
|
@@ -54,17 +85,39 @@ with gr.Blocks(css="app.css") as demo:
|
|
| 54 |
gr.Markdown(value=AUTHORS)
|
| 55 |
|
| 56 |
submit.click(
|
| 57 |
-
fn=
|
| 58 |
inputs=[input_image],
|
| 59 |
outputs=[output_image, output_label],
|
| 60 |
queue=True,
|
| 61 |
)
|
| 62 |
clear_btn.click(
|
| 63 |
-
fn=
|
| 64 |
inputs=[],
|
| 65 |
outputs=[input_image, output_image, output_label],
|
| 66 |
queue=True,
|
| 67 |
)
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
if __name__ == "__main__":
|
| 70 |
demo.queue(api_open=False).launch(share=False)
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# Importing necessary components for the Gradio app
|
| 13 |
+
from app.description import DESCRIPTION_STATIC, DESCRIPTION_DYNAMIC
|
| 14 |
from app.authors import AUTHORS
|
| 15 |
+
from app.app_utils import preprocess_image_and_predict, preprocess_video_and_predict
|
| 16 |
|
| 17 |
|
| 18 |
+
def clear_static_info():
|
| 19 |
return (
|
| 20 |
gr.Image(value=None, type="pil"),
|
| 21 |
gr.Image(value=None, scale=1, elem_classes="dl2"),
|
| 22 |
gr.Label(value=None, num_top_classes=3, scale=1, elem_classes="dl3"),
|
| 23 |
)
|
| 24 |
|
| 25 |
+
def clear_dynamic_info():
|
| 26 |
+
return (
|
| 27 |
+
gr.Video(value=None),
|
| 28 |
+
gr.Video(value=None),
|
| 29 |
+
gr.Video(value=None),
|
| 30 |
+
gr.Plot(value=None),
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
with gr.Blocks(css="app.css") as demo:
|
| 34 |
+
with gr.Tab("Dynamic App"):
|
| 35 |
+
gr.Markdown(value=DESCRIPTION_DYNAMIC)
|
| 36 |
+
with gr.Row():
|
| 37 |
+
with gr.Column(scale=2):
|
| 38 |
+
input_video = gr.Video(elem_classes="video1")
|
| 39 |
+
with gr.Row():
|
| 40 |
+
clear_btn_dynamic = gr.Button(
|
| 41 |
+
value="Clear", interactive=True, scale=1
|
| 42 |
+
)
|
| 43 |
+
submit_dynamic = gr.Button(
|
| 44 |
+
value="Submit", interactive=True, scale=1, elem_classes="submit"
|
| 45 |
+
)
|
| 46 |
+
with gr.Column(scale=2, elem_classes="dl4"):
|
| 47 |
+
with gr.Row():
|
| 48 |
+
output_video = gr.Video(label="Original video", scale=2, elem_classes="video2")
|
| 49 |
+
output_face = gr.Video(label="Pre-processed video", scale=1, elem_classes="video3")
|
| 50 |
+
output_statistics = gr.Plot(label="Statistics of emotions", elem_classes="stat")
|
| 51 |
+
gr.Examples(
|
| 52 |
+
["videos/video1.mp4",
|
| 53 |
+
"videos/video2.mp4"],
|
| 54 |
+
[input_video],
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
with gr.Tab("Static App"):
|
| 58 |
+
gr.Markdown(value=DESCRIPTION_STATIC)
|
| 59 |
with gr.Row():
|
| 60 |
with gr.Column(scale=2, elem_classes="dl1"):
|
| 61 |
input_image = gr.Image(type="pil")
|
|
|
|
| 85 |
gr.Markdown(value=AUTHORS)
|
| 86 |
|
| 87 |
submit.click(
|
| 88 |
+
fn=preprocess_image_and_predict,
|
| 89 |
inputs=[input_image],
|
| 90 |
outputs=[output_image, output_label],
|
| 91 |
queue=True,
|
| 92 |
)
|
| 93 |
clear_btn.click(
|
| 94 |
+
fn=clear_static_info,
|
| 95 |
inputs=[],
|
| 96 |
outputs=[input_image, output_image, output_label],
|
| 97 |
queue=True,
|
| 98 |
)
|
| 99 |
|
| 100 |
+
submit_dynamic.click(
|
| 101 |
+
fn=preprocess_video_and_predict,
|
| 102 |
+
inputs=input_video,
|
| 103 |
+
outputs=[
|
| 104 |
+
output_video,
|
| 105 |
+
output_face,
|
| 106 |
+
output_statistics
|
| 107 |
+
],
|
| 108 |
+
queue=True,
|
| 109 |
+
)
|
| 110 |
+
clear_btn_dynamic.click(
|
| 111 |
+
fn=clear_dynamic_info,
|
| 112 |
+
inputs=[],
|
| 113 |
+
outputs=[
|
| 114 |
+
input_video,
|
| 115 |
+
output_video,
|
| 116 |
+
output_face,
|
| 117 |
+
output_statistics
|
| 118 |
+
],
|
| 119 |
+
queue=True,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
if __name__ == "__main__":
|
| 123 |
demo.queue(api_open=False).launch(share=False)
|
app/app_utils.py
CHANGED
|
@@ -9,17 +9,19 @@ import torch
|
|
| 9 |
import numpy as np
|
| 10 |
import mediapipe as mp
|
| 11 |
from PIL import Image
|
|
|
|
| 12 |
|
| 13 |
# Importing necessary components for the Gradio app
|
| 14 |
-
from app.model import
|
| 15 |
-
from app.face_utils import get_box
|
| 16 |
from app.config import DICT_EMO
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
mp_face_mesh = mp.solutions.face_mesh
|
| 20 |
|
| 21 |
|
| 22 |
-
def
|
| 23 |
inp = np.array(inp)
|
| 24 |
|
| 25 |
if inp is None:
|
|
@@ -43,10 +45,91 @@ def preprocess_and_predict(inp):
|
|
| 43 |
cur_face = inp[startY:endY, startX:endX]
|
| 44 |
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
| 45 |
prediction = (
|
| 46 |
-
torch.nn.functional.softmax(
|
| 47 |
.detach()
|
| 48 |
.numpy()[0]
|
| 49 |
)
|
| 50 |
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
| 51 |
|
| 52 |
return cur_face, confidences
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
import mediapipe as mp
|
| 11 |
from PIL import Image
|
| 12 |
+
import cv2
|
| 13 |
|
| 14 |
# Importing necessary components for the Gradio app
|
| 15 |
+
from app.model import pth_model_static, pth_model_dynamic, pth_processing
|
| 16 |
+
from app.face_utils import get_box, display_info
|
| 17 |
from app.config import DICT_EMO
|
| 18 |
+
from app.plot import statistics_plot
|
| 19 |
|
| 20 |
|
| 21 |
mp_face_mesh = mp.solutions.face_mesh
|
| 22 |
|
| 23 |
|
| 24 |
+
def preprocess_image_and_predict(inp):
|
| 25 |
inp = np.array(inp)
|
| 26 |
|
| 27 |
if inp is None:
|
|
|
|
| 45 |
cur_face = inp[startY:endY, startX:endX]
|
| 46 |
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
| 47 |
prediction = (
|
| 48 |
+
torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
|
| 49 |
.detach()
|
| 50 |
.numpy()[0]
|
| 51 |
)
|
| 52 |
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
| 53 |
|
| 54 |
return cur_face, confidences
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def preprocess_video_and_predict(video):
|
| 58 |
+
|
| 59 |
+
cap = cv2.VideoCapture(video)
|
| 60 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 61 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 62 |
+
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
| 63 |
+
|
| 64 |
+
path_save_video = 'result.mp4'
|
| 65 |
+
vid_writer = cv2.VideoWriter(path_save_video, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
| 66 |
+
|
| 67 |
+
lstm_features = []
|
| 68 |
+
count_frame = 1
|
| 69 |
+
probs = []
|
| 70 |
+
frames = []
|
| 71 |
+
last_output = None
|
| 72 |
+
|
| 73 |
+
with mp_face_mesh.FaceMesh(
|
| 74 |
+
max_num_faces=1,
|
| 75 |
+
refine_landmarks=False,
|
| 76 |
+
min_detection_confidence=0.5,
|
| 77 |
+
min_tracking_confidence=0.5) as face_mesh:
|
| 78 |
+
|
| 79 |
+
while cap.isOpened():
|
| 80 |
+
_, frame = cap.read()
|
| 81 |
+
if frame is None: break
|
| 82 |
+
|
| 83 |
+
frame_copy = frame.copy()
|
| 84 |
+
frame_copy.flags.writeable = False
|
| 85 |
+
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
| 86 |
+
results = face_mesh.process(frame_copy)
|
| 87 |
+
frame_copy.flags.writeable = True
|
| 88 |
+
|
| 89 |
+
if results.multi_face_landmarks:
|
| 90 |
+
for fl in results.multi_face_landmarks:
|
| 91 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
| 92 |
+
cur_face = frame_copy[startY:endY, startX: endX]
|
| 93 |
+
|
| 94 |
+
if (count_frame-1)%5 == 0:
|
| 95 |
+
cur_face_copy = pth_processing(Image.fromarray(cur_face))
|
| 96 |
+
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
|
| 97 |
+
|
| 98 |
+
if len(lstm_features) == 0:
|
| 99 |
+
lstm_features = [features]*10
|
| 100 |
+
else:
|
| 101 |
+
lstm_features = lstm_features[1:] + [features]
|
| 102 |
+
|
| 103 |
+
lstm_f = torch.from_numpy(np.vstack(lstm_features))
|
| 104 |
+
lstm_f = torch.unsqueeze(lstm_f, 0)
|
| 105 |
+
output = pth_model_dynamic(lstm_f).detach().numpy()
|
| 106 |
+
last_output = output
|
| 107 |
+
else:
|
| 108 |
+
if last_output is not None:
|
| 109 |
+
output = last_output
|
| 110 |
+
elif last_output is None:
|
| 111 |
+
output = np.zeros((7))
|
| 112 |
+
|
| 113 |
+
probs.append(output[0])
|
| 114 |
+
frames.append(count_frame)
|
| 115 |
+
else:
|
| 116 |
+
empty = np.empty((7))
|
| 117 |
+
empty[:] = np.nan
|
| 118 |
+
probs.append(empty)
|
| 119 |
+
frames.append(count_frame)
|
| 120 |
+
|
| 121 |
+
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
|
| 122 |
+
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
|
| 123 |
+
|
| 124 |
+
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
|
| 125 |
+
count_frame += 1
|
| 126 |
+
vid_writer.write(cur_face)
|
| 127 |
+
|
| 128 |
+
vid_writer.release()
|
| 129 |
+
|
| 130 |
+
stat = statistics_plot(frames, probs)
|
| 131 |
+
|
| 132 |
+
if not stat:
|
| 133 |
+
return None, None, None
|
| 134 |
+
|
| 135 |
+
return video, path_save_video, stat
|
app/config.py
CHANGED
|
@@ -37,3 +37,13 @@ DICT_EMO = {
|
|
| 37 |
5: "Disgust",
|
| 38 |
6: "Anger",
|
| 39 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
5: "Disgust",
|
| 38 |
6: "Anger",
|
| 39 |
}
|
| 40 |
+
|
| 41 |
+
COLORS = {
|
| 42 |
+
0: 'blue',
|
| 43 |
+
1: 'orange',
|
| 44 |
+
2: 'green',
|
| 45 |
+
3: 'red',
|
| 46 |
+
4: 'purple',
|
| 47 |
+
5: 'brown',
|
| 48 |
+
6: 'pink'
|
| 49 |
+
}
|
app/description.py
CHANGED
|
@@ -8,10 +8,20 @@ License: MIT License
|
|
| 8 |
# Importing necessary components for the Gradio app
|
| 9 |
from app.config import config_data
|
| 10 |
|
| 11 |
-
|
| 12 |
# Static Facial Expression Recognition
|
| 13 |
<div class="app-flex-container">
|
| 14 |
<img src="https://img.shields.io/badge/version-v{config_data.APP_VERSION}-rc0" alt="Version">
|
| 15 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition&countColor=%23263759&style=flat" /></a>
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"""
|
|
|
|
| 8 |
# Importing necessary components for the Gradio app
|
| 9 |
from app.config import config_data
|
| 10 |
|
| 11 |
+
DESCRIPTION_STATIC = f"""\
|
| 12 |
# Static Facial Expression Recognition
|
| 13 |
<div class="app-flex-container">
|
| 14 |
<img src="https://img.shields.io/badge/version-v{config_data.APP_VERSION}-rc0" alt="Version">
|
| 15 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition&countColor=%23263759&style=flat" /></a>
|
| 16 |
+
<a href="https://paperswithcode.com/paper/in-search-of-a-robust-facial-expressions"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/in-search-of-a-robust-facial-expressions/facial-expression-recognition-on-affectnet" /></a>
|
| 17 |
+
</div>
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
DESCRIPTION_DYNAMIC = f"""\
|
| 21 |
+
# Dynamic Facial Expression Recognition
|
| 22 |
+
<div class="app-flex-container">
|
| 23 |
+
<img src="https://img.shields.io/badge/version-v{config_data.APP_VERSION}-rc0" alt="Version">
|
| 24 |
+
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition&countColor=%23263759&style=flat" /></a>
|
| 25 |
+
<a href="https://paperswithcode.com/paper/in-search-of-a-robust-facial-expressions"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/in-search-of-a-robust-facial-expressions/facial-expression-recognition-on-affectnet" /></a>
|
| 26 |
+
</div>
|
| 27 |
"""
|
app/face_utils.py
CHANGED
|
@@ -7,6 +7,7 @@ License: MIT License
|
|
| 7 |
|
| 8 |
import numpy as np
|
| 9 |
import math
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
|
|
@@ -31,3 +32,36 @@ def get_box(fl, w, h):
|
|
| 31 |
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
| 32 |
|
| 33 |
return startX, startY, endX, endY
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
import numpy as np
|
| 9 |
import math
|
| 10 |
+
import cv2
|
| 11 |
|
| 12 |
|
| 13 |
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
|
|
|
|
| 32 |
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
| 33 |
|
| 34 |
return startX, startY, endX, endY
|
| 35 |
+
|
| 36 |
+
def display_info(img, text, margin=1.0, box_scale=1.0):
|
| 37 |
+
img_h, img_w, _ = img.shape
|
| 38 |
+
line_width = int(min(img_h, img_w) * 0.001)
|
| 39 |
+
thickness = max(int(line_width / 3), 1)
|
| 40 |
+
|
| 41 |
+
font_face = cv2.FONT_HERSHEY_SIMPLEX
|
| 42 |
+
font_color = (0, 0, 0)
|
| 43 |
+
font_scale = thickness / 1.5
|
| 44 |
+
|
| 45 |
+
t_w, t_h = cv2.getTextSize(text, font_face, font_scale, None)[0]
|
| 46 |
+
|
| 47 |
+
margin_n = int(t_h * margin)
|
| 48 |
+
sub_img = img[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
|
| 49 |
+
img_w - t_w - margin_n - int(2 * t_h * box_scale): img_w - margin_n]
|
| 50 |
+
|
| 51 |
+
white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255
|
| 52 |
+
|
| 53 |
+
img[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
|
| 54 |
+
img_w - t_w - margin_n - int(2 * t_h * box_scale):img_w - margin_n] = cv2.addWeighted(sub_img, 0.5, white_rect, .5, 1.0)
|
| 55 |
+
|
| 56 |
+
cv2.putText(img=img,
|
| 57 |
+
text=text,
|
| 58 |
+
org=(img_w - t_w - margin_n - int(2 * t_h * box_scale) // 2,
|
| 59 |
+
0 + margin_n + t_h + int(2 * t_h * box_scale) // 2),
|
| 60 |
+
fontFace=font_face,
|
| 61 |
+
fontScale=font_scale,
|
| 62 |
+
color=font_color,
|
| 63 |
+
thickness=thickness,
|
| 64 |
+
lineType=cv2.LINE_AA,
|
| 65 |
+
bottomLeftOrigin=False)
|
| 66 |
+
|
| 67 |
+
return img
|
app/model.py
CHANGED
|
@@ -27,7 +27,10 @@ def load_model(model_url, model_path):
|
|
| 27 |
return None
|
| 28 |
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def pth_processing(fp):
|
|
|
|
| 27 |
return None
|
| 28 |
|
| 29 |
|
| 30 |
+
pth_model_static = load_model(config_data.model_static_url, config_data.model_static_path)
|
| 31 |
+
|
| 32 |
+
pth_model_dynamic = load_model(config_data.model_dynamic_url, config_data.model_dynamic_path)
|
| 33 |
+
|
| 34 |
|
| 35 |
|
| 36 |
def pth_processing(fp):
|
app/plot.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
File: config.py
|
| 3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
| 4 |
+
Description: Plotting statistical information.
|
| 5 |
+
License: MIT License
|
| 6 |
+
"""
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
# Importing necessary components for the Gradio app
|
| 11 |
+
from app.config import DICT_EMO, COLORS
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def statistics_plot(frames, probs):
|
| 15 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
| 16 |
+
fig.subplots_adjust(left=0.07, bottom=0.14, right=0.98, top=0.8, wspace=0, hspace=0)
|
| 17 |
+
# Установка параметров left, bottom, right, top, чтобы выделить место для легенды и названий осей
|
| 18 |
+
probs = np.array(probs)
|
| 19 |
+
for i in range(7):
|
| 20 |
+
try:
|
| 21 |
+
ax.plot(frames, probs[:, i], label=DICT_EMO[i], c=COLORS[i])
|
| 22 |
+
except Exception:
|
| 23 |
+
return None
|
| 24 |
+
|
| 25 |
+
ax.legend(loc='upper center', bbox_to_anchor=(0.47, 1.2), ncol=7, fontsize=12)
|
| 26 |
+
ax.set_xlabel('Frames', fontsize=12) # Добавляем подпись к оси X
|
| 27 |
+
ax.set_ylabel('Probability', fontsize=12) # Добавляем подпись к оси Y
|
| 28 |
+
ax.grid(True)
|
| 29 |
+
return plt
|
config.toml
CHANGED
|
@@ -1,5 +1,9 @@
|
|
| 1 |
-
APP_VERSION = "0.
|
| 2 |
|
| 3 |
-
[
|
| 4 |
url = "https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolve/main/FER_static_ResNet50_AffectNet.pth"
|
| 5 |
path = "FER_static_ResNet50_AffectNet.pth"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
APP_VERSION = "0.2.0"
|
| 2 |
|
| 3 |
+
[model_static]
|
| 4 |
url = "https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolve/main/FER_static_ResNet50_AffectNet.pth"
|
| 5 |
path = "FER_static_ResNet50_AffectNet.pth"
|
| 6 |
+
|
| 7 |
+
[model_dynamic]
|
| 8 |
+
url = "https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolve/main/FER_dinamic_LSTM_IEMOCAP.pth"
|
| 9 |
+
path = "FER_dinamic_LSTM_IEMOCAP.pth"
|
result.mp4
ADDED
|
File without changes
|
videos/video1.mp4
ADDED
|
Binary file (680 kB). View file
|
|
|
videos/video2.mp4
ADDED
|
Binary file (182 kB). View file
|
|
|