File size: 31,415 Bytes
bdffd5c
 
 
8260884
 
43db08f
bdffd5c
e1e62e1
f081971
bd56d11
3ffd86f
016ea8f
aca6259
5248493
 
2c973dd
98e6d56
 
9d8c1cd
ea13192
2c973dd
 
 
3ffd86f
5248493
3ffd86f
0e35be5
3ffd86f
a87a04f
 
c0f8c1d
635f794
b4c9139
aca6259
3ffd86f
aca6259
 
d17b8ed
43db08f
aca6259
24633e1
aca6259
5961abe
aca6259
242bcd5
5961abe
72f4fdd
43db08f
f44faaa
3ffd86f
b4c9139
3ffd86f
 
bd56d11
 
 
0e35be5
bd56d11
 
49ae01d
5961abe
3ffd86f
67be25f
 
 
bd56d11
e449567
 
0e35be5
 
3ffd86f
b926bd9
 
 
 
 
a0dd4b1
0e35be5
 
 
635f794
0e35be5
 
 
 
635f794
0e35be5
a703ba0
0e35be5
 
635f794
0e35be5
49b618f
bd56d11
ca02ad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc8b6c
3ffd86f
103b11f
6732739
103b11f
b00eab7
c04761a
3ffd86f
5961abe
a703ba0
a46b50d
 
 
b4c9139
bf3fec4
aca6259
 
4cc8b6c
43db08f
 
ea13192
b4c9139
e0fdd09
4658fdf
5961abe
 
e0fdd09
5961abe
aca6259
 
bf3fec4
80c4a05
90e17e9
4658fdf
43db08f
c0f8c1d
731ace7
a703ba0
aca6259
 
8260884
43db08f
c04761a
c5d33a2
4658fdf
43db08f
 
 
 
 
43b6520
 
9281fd3
43db08f
 
43b6520
 
 
 
731ace7
1b9c1bb
51ad7f1
 
 
 
 
 
 
 
 
 
43b6520
b4c9139
43b6520
 
 
7d97b34
b4c9139
05a8b3a
158e2b8
b4c9139
97bdf8a
 
43b6520
 
9281fd3
 
 
 
43db08f
731ace7
9281fd3
97bdf8a
43b6520
e255f2c
97bdf8a
 
 
 
 
 
 
0075b03
97bdf8a
 
 
 
 
2c973dd
97bdf8a
da06c9f
97bdf8a
 
 
 
 
e255f2c
97bdf8a
731ace7
1b9c1bb
2c973dd
635f794
 
 
0e35be5
635f794
0e35be5
635f794
 
 
 
0aa5e3b
8acde4f
 
9fff002
 
635f794
0e35be5
635f794
0e35be5
635f794
 
8260884
 
 
3ffd86f
 
 
bd56d11
 
6231060
4cc8b6c
6231060
42d6456
6231060
 
 
3ffd86f
42d6456
6231060
 
cd0938d
 
 
 
aca6259
6231060
3ffd86f
 
4cc8b6c
 
 
 
 
 
5961abe
 
 
 
 
 
 
4cc8b6c
a709b3b
5961abe
9281fd3
a560c11
 
 
a46b50d
6b65221
a560c11
aca6259
3ffd86f
cca54b2
3ffd86f
aca6259
98e6d56
 
 
 
 
 
42d6456
24781ef
bc4ea04
80c4a05
f0507d1
4cc8b6c
4658fdf
 
 
f0507d1
ea13192
a46b50d
 
 
 
 
cca54b2
728ab9b
cca54b2
a709b3b
49ae01d
aca6259
a709b3b
aca6259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7268ce
aca6259
 
 
 
 
6b65221
a46b50d
 
72f4fdd
a46b50d
72f4fdd
a46b50d
72f4fdd
a46b50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728ab9b
49ae01d
a46b50d
 
a709b3b
a46b50d
 
f081971
242bcd5
a46b50d
 
f081971
 
49ae01d
 
 
242bcd5
728ab9b
49ae01d
 
51ad7f1
49ae01d
 
 
a46b50d
49ae01d
 
 
a46b50d
49ae01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a46b50d
49ae01d
a46b50d
6732739
 
49ae01d
 
6732739
49ae01d
 
a46b50d
 
 
49ae01d
a46b50d
f44faaa
a46b50d
f44faaa
 
 
 
 
 
 
a46b50d
 
 
 
 
 
 
f44faaa
 
 
 
 
 
 
a46b50d
f44faaa
a46b50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f44faaa
a46b50d
 
 
 
 
 
 
49ae01d
 
 
 
 
 
 
 
 
 
 
 
d17b8ed
49ae01d
d17b8ed
3ffd86f
 
 
 
 
49ae01d
f081971
49ae01d
f081971
 
49ae01d
 
 
 
 
 
f081971
49ae01d
 
 
 
 
 
 
f081971
49ae01d
 
 
 
 
 
f081971
 
49ae01d
 
f081971
8260884
ea13192
3ffd86f
 
ca02ad4
 
 
 
b4c9139
 
 
 
 
 
 
 
 
9872fa5
 
 
 
 
 
 
 
 
 
6b65221
2c973dd
f44faaa
98e6d56
f44faaa
 
 
 
2c973dd
 
c0f8c1d
f081971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c973dd
a560c11
5961abe
 
 
 
731ace7
728ab9b
 
 
731ace7
728ab9b
 
49ae01d
731ace7
49ae01d
1b9c1bb
49ae01d
5961abe
2c973dd
f44faaa
bf3fec4
c0f8c1d
49ae01d
2c973dd
 
 
f44faaa
bf3fec4
a560c11
49ae01d
2c973dd
 
 
 
 
 
 
 
 
 
1b9c1bb
b4c9139
49ae01d
 
 
 
 
2c973dd
49ae01d
2c973dd
 
49ae01d
51ad7f1
 
f081971
49ae01d
 
ea13192
54b9181
1242b1d
fff1fe9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
from climateqa.engine.embeddings import get_embeddings_function
embeddings_function = get_embeddings_function()

from sentence_transformers import CrossEncoder

# reranker = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")

import gradio as gr
from gradio_modal import Modal
import pandas as pd
import numpy as np
import os
import time
import re
import json

from gradio import ChatMessage

# from gradio_modal import Modal

from io import BytesIO
import base64

from datetime import datetime
from azure.storage.fileshare import ShareServiceClient

from utils import create_user_id

from gradio_modal import Modal

from PIL import Image

from langchain_core.runnables.schema import StreamEvent

# ClimateQ&A imports
from climateqa.engine.llm import get_llm
from climateqa.engine.vectorstore import get_pinecone_vectorstore
# from climateqa.knowledge.retriever import ClimateQARetriever
from climateqa.engine.reranker import get_reranker
from climateqa.engine.embeddings import get_embeddings_function
from climateqa.engine.chains.prompts import audience_prompts
from climateqa.sample_questions import QUESTIONS
from climateqa.constants import POSSIBLE_REPORTS, OWID_CATEGORIES
from climateqa.utils import get_image_from_azure_blob_storage
from climateqa.engine.graph import make_graph_agent
from climateqa.engine.embeddings import get_embeddings_function
from climateqa.engine.chains.retrieve_papers import find_papers

from front.utils import serialize_docs,process_figures

from climateqa.event_handler import init_audience, handle_retrieved_documents, stream_answer,handle_retrieved_owid_graphs 

# Load environment variables in local mode
try:
    from dotenv import load_dotenv
    load_dotenv()
except Exception as e:
    pass

import requests

# Set up Gradio Theme
theme = gr.themes.Base(
    primary_hue="blue",
    secondary_hue="red",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)



init_prompt = ""

system_template = {
    "role": "system",
    "content": init_prompt,
}

account_key = os.environ["BLOB_ACCOUNT_KEY"]
if len(account_key) == 86:
    account_key += "=="

credential = {
    "account_key": account_key,
    "account_name": os.environ["BLOB_ACCOUNT_NAME"],
}

account_url = os.environ["BLOB_ACCOUNT_URL"]
file_share_name = "climateqa"
service = ShareServiceClient(account_url=account_url, credential=credential)
share_client = service.get_share_client(file_share_name)

user_id = create_user_id()


CITATION_LABEL = "BibTeX citation for ClimateQ&A"
CITATION_TEXT = r"""@misc{climateqa,
    author={Théo Alves Da Costa, Timothée Bohe},
    title={ClimateQ&A, AI-powered conversational assistant for climate change and biodiversity loss},
    year={2024},
    howpublished= {\url{https://climateqa.com}},
}
@software{climateqa,
    author = {Théo Alves Da Costa, Timothée Bohe},
    publisher = {ClimateQ&A},
    title = {ClimateQ&A, AI-powered conversational assistant for climate change and biodiversity loss},
}
"""



# Create vectorstore and retriever
vectorstore = get_pinecone_vectorstore(embeddings_function, index_name = os.getenv("PINECONE_API_INDEX"))
vectorstore_graphs = get_pinecone_vectorstore(embeddings_function, index_name = os.getenv("PINECONE_API_INDEX_OWID"), text_key="description")

llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
reranker = get_reranker("nano")

agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, reranker=reranker)

def update_config_modal_visibility(config_open):
    new_config_visibility_status = not config_open
    return gr.update(visible=new_config_visibility_status), new_config_visibility_status

async def chat(query, history, audience, sources, reports, relevant_content_sources, search_only):
    """taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
    (messages in gradio format, messages in langchain format, source documents)"""

    date_now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f">> NEW QUESTION ({date_now}) : {query}")

    audience_prompt = init_audience(audience)

    # Prepare default values
    if sources is None or len(sources) == 0:
        sources = ["IPCC", "IPBES", "IPOS"]

    if reports is None or len(reports) == 0:
        reports = []
    
    inputs = {"user_input": query,"audience": audience_prompt,"sources_input":sources, "relevant_content_sources" : relevant_content_sources, "search_only": search_only}
    result = agent.astream_events(inputs,version = "v1") 


    docs = []
    used_figures=[]
    related_contents = []
    docs_html = ""
    output_query = ""
    output_language = ""
    output_keywords = ""
    start_streaming = False
    graphs_html = ""    
    figures = '<div class="figures-container"><p></p> </div>'

    steps_display = {
        "categorize_intent":("🔄️ Analyzing user message",True),
        "transform_query":("🔄️ Thinking step by step to answer the question",True),
        "retrieve_documents":("🔄️ Searching in the knowledge base",False),
    }
    
    used_documents = []
    answer_message_content = ""
    try:
        async for event in result:
            if "langgraph_node" in event["metadata"]:
                node = event["metadata"]["langgraph_node"]

                if event["event"] == "on_chain_end" and event["name"] == "retrieve_documents" :# when documents are retrieved
                    docs, docs_html, history, used_documents, related_contents = handle_retrieved_documents(event, history, used_documents)    
                
                elif event["event"] == "on_chain_end" and node == "categorize_intent" and event["name"] == "_write": # when the query is transformed
                    
                    intent = event["data"]["output"]["intent"]
                    if "language" in event["data"]["output"]:
                        output_language = event["data"]["output"]["language"]
                    else :
                        output_language = "English"
                    history[-1].content = f"Language identified : {output_language} \n Intent identified : {intent}"
                    
                    
                elif event["name"] in steps_display.keys() and event["event"] == "on_chain_start": #display steps
                    event_description, display_output = steps_display[node]
                    if not hasattr(history[-1], 'metadata') or history[-1].metadata["title"] != event_description: # if a new step begins
                        history.append(ChatMessage(role="assistant", content = "", metadata={'title' :event_description}))
 
                elif event["name"] != "transform_query" and event["event"] == "on_chat_model_stream" and node in ["answer_rag", "answer_search","answer_chitchat"]:# if streaming answer
                    history, start_streaming, answer_message_content = stream_answer(history, event, start_streaming, answer_message_content)

                elif event["name"] in ["retrieve_graphs", "retrieve_graphs_ai"] and event["event"] == "on_chain_end":
                    graphs_html = handle_retrieved_owid_graphs(event, graphs_html)


                if event["name"] == "transform_query" and event["event"] =="on_chain_end":
                    if hasattr(history[-1],"content"):
                        history[-1].content += "Decompose question into sub-questions: \n\n - " + "\n - ".join([q["question"] for q in event["data"]["output"]["remaining_questions"]])
                        
                if event["name"] == "categorize_intent" and event["event"] == "on_chain_start":
                    print("X")
            
            yield history, docs_html, output_query, output_language, related_contents , graphs_html,  #,output_query,output_keywords
 
    except Exception as e:
        print(event, "has failed")
        raise gr.Error(f"{e}")


    try:
        # Log answer on Azure Blob Storage
        if os.getenv("GRADIO_ENV") != "local":
            timestamp = str(datetime.now().timestamp())
            file = timestamp + ".json"
            prompt = history[1]["content"]
            logs = {
                "user_id": str(user_id),
                "prompt": prompt,
                "query": prompt,
                "question":output_query,
                "sources":sources,
                "docs":serialize_docs(docs),
                "answer": history[-1].content,
                "time": timestamp,
            }
            log_on_azure(file, logs, share_client)
    except Exception as e:
        print(f"Error logging on Azure Blob Storage: {e}")
        raise gr.Error(f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)")

    yield history, docs_html, output_query, output_language, related_contents, graphs_html 


def save_feedback(feed: str, user_id):
    if len(feed) > 1:
        timestamp = str(datetime.now().timestamp())
        file = user_id + timestamp + ".json"
        logs = {
            "user_id": user_id,
            "feedback": feed,
            "time": timestamp,
        }
        log_on_azure(file, logs, share_client)
        return "Feedback submitted, thank you!"




def log_on_azure(file, logs, share_client):
    logs = json.dumps(logs)
    file_client = share_client.get_file_client(file)
    file_client.upload_file(logs)





# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------


init_prompt = """
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.

❓ How to use
- **Language**: You can ask me your questions in any language. 
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.

⚠️ Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*

🛈 Information
Please note that we log your questions for meta-analysis purposes, so avoid sharing any sensitive or personal information.


What do you want to learn ?
"""


def vote(data: gr.LikeData):
    if data.liked:
        print(data.value)
    else:
        print(data)

def save_graph(saved_graphs_state, embedding, category):
    print(f"\nCategory:\n{saved_graphs_state}\n")
    if category not in saved_graphs_state:
        saved_graphs_state[category] = []
    if embedding not in saved_graphs_state[category]:
        saved_graphs_state[category].append(embedding)
    return saved_graphs_state, gr.Button("Graph Saved")



with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=theme,elem_id = "main-component") as demo:
    chat_completed_state = gr.State(0)
    current_graphs = gr.State([])
    saved_graphs = gr.State({})
    config_open = gr.State(False)

    
    with gr.Tab("ClimateQ&A"):

        with gr.Row(elem_id="chatbot-row"):
            with gr.Column(scale=2):
                chatbot = gr.Chatbot(
                    value = [ChatMessage(role="assistant", content=init_prompt)],
                    type = "messages",
                    show_copy_button=True,
                    show_label = False,
                    elem_id="chatbot",
                    layout = "panel",
                    avatar_images = (None,"https://i.ibb.co/YNyd5W2/logo4.png"),
                    max_height="80vh",
                    height="100vh"
                )
                
                # bot.like(vote,None,None)



                with gr.Row(elem_id = "input-message"):
                    textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox")
                    
                    config_button = gr.Button("",elem_id="config-button")
                    # config_checkbox_button = gr.Checkbox(label = '⚙️', value="show",visible=True, interactive=True, elem_id="checkbox-config")
                    
                

            with gr.Column(scale=2, variant="panel",elem_id = "right-panel"):


                with gr.Tabs(elem_id = "right_panel_tab") as tabs:
                    with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
                                        
                        examples_hidden = gr.Textbox(visible = False)
                        first_key = list(QUESTIONS.keys())[0]
                        dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,interactive = True,show_label = True,label = "Select a category of sample questions",elem_id = "dropdown-samples")

                        samples = []
                        for i,key in enumerate(QUESTIONS.keys()):

                            examples_visible = True if i == 0 else False

                            with gr.Row(visible = examples_visible) as group_examples:

                                examples_questions = gr.Examples(
                                    QUESTIONS[key],
                                    [examples_hidden],
                                    examples_per_page=8,
                                    run_on_click=False,
                                    elem_id=f"examples{i}",
                                    api_name=f"examples{i}",
                                    # label = "Click on the example question or enter your own",
                                    # cache_examples=True,
                                )
                            
                            samples.append(group_examples)
                            
                    # with gr.Tab("Configuration", id = 10, ) as tab_config:
                    #         # gr.Markdown("Reminders: You can talk in any language, ClimateQ&A is multi-lingual!")

                    #     pass
                            
                            # with gr.Row():
                                
                            #     dropdown_sources = gr.CheckboxGroup(
                            #         ["IPCC", "IPBES","IPOS"],
                            #         label="Select source",
                            #         value=["IPCC"],
                            #         interactive=True,
                            #     )
                            #     dropdown_external_sources = gr.CheckboxGroup(
                            #         ["IPCC figures","OpenAlex", "OurWorldInData"],
                            #         label="Select database to search for relevant content",
                            #         value=["IPCC figures"],
                            #         interactive=True,
                            #     )

                            # dropdown_reports = gr.Dropdown(
                            #     POSSIBLE_REPORTS,
                            #     label="Or select specific reports",
                            #     multiselect=True,
                            #     value=None,
                            #     interactive=True,
                            # )

                            # search_only = gr.Checkbox(label="Search only without chating", value=False, interactive=True, elem_id="checkbox-chat")


                            # dropdown_audience = gr.Dropdown(
                            #     ["Children","General public","Experts"],
                            #     label="Select audience",
                            #     value="Experts",
                            #     interactive=True,
                            # )
                            
                                
                            # after = gr.Slider(minimum=1950,maximum=2023,step=1,value=1960,label="Publication date",show_label=True,interactive=True,elem_id="date-papers", visible=False)
                            

                            # output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False, visible= False)
                            # output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False, visible= False)                            


                            # dropdown_external_sources.change(lambda x: gr.update(visible = True ) if "OpenAlex" in x else gr.update(visible=False) , inputs=[dropdown_external_sources], outputs=[after])
                            # # dropdown_external_sources.change(lambda x: gr.update(visible = True ) if "OpenAlex" in x else gr.update(visible=False) , inputs=[dropdown_external_sources], outputs=[after], visible=True)


                    with gr.Tab("Sources",elem_id = "tab-sources",id = 1) as tab_sources:
                        sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
                    
                    
                        
                    with gr.Tab("Recommended content", elem_id="tab-recommended_content",id=2) as tab_recommended_content:
                        with gr.Tabs(elem_id = "group-subtabs") as tabs_recommended_content:
        
                            with gr.Tab("Figures",elem_id = "tab-figures",id = 3) as tab_figures:
                                sources_raw = gr.State()
                                
                                with Modal(visible=False, elem_id="modal_figure_galery") as figure_modal:
                                    gallery_component = gr.Gallery(object_fit='scale-down',elem_id="gallery-component", height="80vh")
                                    
                                show_full_size_figures = gr.Button("Show figures in full size",elem_id="show-figures",interactive=True)    
                                show_full_size_figures.click(lambda : Modal(visible=True),None,figure_modal)

                                figures_cards = gr.HTML(show_label=False, elem_id="sources-figures")



                            with gr.Tab("Papers",elem_id = "tab-citations",id = 4) as tab_papers:
                                # btn_summary = gr.Button("Summary")
                                # Fenêtre simulée pour le Summary
                                with gr.Accordion(visible=True, elem_id="papers-summary-popup", label= "See summary of relevant papers", open= False) as summary_popup:
                                    papers_summary = gr.Markdown("", visible=True, elem_id="papers-summary")

                                # btn_relevant_papers = gr.Button("Relevant papers")
                                # Fenêtre simulée pour les Relevant Papers
                                with gr.Accordion(visible=True, elem_id="papers-relevant-popup",label= "See relevant papers", open= False) as relevant_popup:
                                    papers_html = gr.HTML(show_label=False, elem_id="papers-textbox")

                                btn_citations_network = gr.Button("Explore papers citations network")
                                # Fenêtre simulée pour le Citations Network
                                with Modal(visible=False) as papers_modal:
                                    citations_network = gr.HTML("<h3>Citations Network Graph</h3>", visible=True, elem_id="papers-citations-network")
                                btn_citations_network.click(lambda: Modal(visible=True), None, papers_modal)
                    
                                        
                            
                            with gr.Tab("Graphs", elem_id="tab-graphs", id=5) as tab_graphs:
                                
                                graphs_container = gr.HTML("<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>",elem_id="graphs-container")
                                current_graphs.change(lambda x : x, inputs=[current_graphs], outputs=[graphs_container])
                                
            with Modal(visible=False,elem_id="modal-config") as config_modal:
                gr.Markdown("Reminders: You can talk in any language, ClimateQ&A is multi-lingual!")

                        
                # with gr.Row():
                    
                dropdown_sources = gr.CheckboxGroup(
                    ["IPCC", "IPBES","IPOS"],
                    label="Select source (by default search in all sources)",
                    value=["IPCC"],
                    interactive=True,
                )
                
                dropdown_reports = gr.Dropdown(
                    POSSIBLE_REPORTS,
                    label="Or select specific reports",
                    multiselect=True,
                    value=None,
                    interactive=True,
                )
                                
                dropdown_external_sources = gr.CheckboxGroup(
                    ["IPCC figures","OpenAlex", "OurWorldInData"],
                    label="Select database to search for relevant content",
                    value=["IPCC figures"],
                    interactive=True,
                )

                search_only = gr.Checkbox(label="Search only for recommended content without chating", value=False, interactive=True, elem_id="checkbox-chat")


                dropdown_audience = gr.Dropdown(
                    ["Children","General public","Experts"],
                    label="Select audience",
                    value="Experts",
                    interactive=True,
                )
                
                    
                after = gr.Slider(minimum=1950,maximum=2023,step=1,value=1960,label="Publication date",show_label=True,interactive=True,elem_id="date-papers", visible=False)
                

                output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False, visible= False)
                output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False, visible= False)                            


                dropdown_external_sources.change(lambda x: gr.update(visible = True ) if "OpenAlex" in x else gr.update(visible=False) , inputs=[dropdown_external_sources], outputs=[after])
                
                close_config_modal = gr.Button("Validate and Close",elem_id="close-config-modal")
                close_config_modal.click(fn=update_config_modal_visibility, inputs=[config_open], outputs=[config_modal, config_open])
                # dropdown_external_sources.change(lambda x: gr.update(visible = True ) if "OpenAlex" in x else gr.update(visible=False) , inputs=[dropdown_external_sources], outputs=[after], visible=True)
            

            
            config_button.click(fn=update_config_modal_visibility, inputs=[config_open], outputs=[config_modal, config_open])
           
                    # with gr.Tab("OECD",elem_id = "tab-oecd",id = 6):
                    #     oecd_indicator = "RIVER_FLOOD_RP100_POP_SH"
                    #     oecd_topic = "climate"
                    #     oecd_latitude = "46.8332"
                    #     oecd_longitude = "5.3725"
                    #     oecd_zoom = "5.6442"
                    #     # Create the HTML content with the iframe
                    #     iframe_html = f"""
                    #     <iframe src="https://localdataportal.oecd.org/maps.html?indicator={oecd_indicator}&topic={oecd_topic}&latitude={oecd_latitude}&longitude={oecd_longitude}&zoom={oecd_zoom}"
                    #             width="100%" height="600" frameborder="0" style="border:0;" allowfullscreen></iframe>
                    #     """
                    #     oecd_textbox = gr.HTML(iframe_html, show_label=False, elem_id="oecd-textbox")

   


#---------------------------------------------------------------------------------------
# OTHER TABS
#---------------------------------------------------------------------------------------

    # with gr.Tab("Settings",elem_id = "tab-config",id = 2):

    #     gr.Markdown("Reminder: You can talk in any language, ClimateQ&A is multi-lingual!")


    #     dropdown_sources = gr.CheckboxGroup(
    #         ["IPCC", "IPBES","IPOS", "OpenAlex"],
    #         label="Select source",
    #         value=["IPCC"],
    #         interactive=True,
    #     )

    #     dropdown_reports = gr.Dropdown(
    #         POSSIBLE_REPORTS,
    #         label="Or select specific reports",
    #         multiselect=True,
    #         value=None,
    #         interactive=True,
    #     )

    #     dropdown_audience = gr.Dropdown(
    #         ["Children","General public","Experts"],
    #         label="Select audience",
    #         value="Experts",
    #         interactive=True,
    #     )


    #     output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False)
    #     output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False)


    with gr.Tab("About",elem_classes = "max-height other-tabs"):
        with gr.Row():
            with gr.Column(scale=1):




                gr.Markdown(
                    """
                    ### More info
                    - See more info at [https://climateqa.com](https://climateqa.com/docs/intro/)
                    - Feedbacks on this [form](https://forms.office.com/e/1Yzgxm6jbp)
                                                
                    ### Citation
                    """
                )
                with gr.Accordion(CITATION_LABEL,elem_id="citation", open = False,):
                    # # Display citation label and text)
                    gr.Textbox(
                        value=CITATION_TEXT,
                        label="",
                        interactive=False,
                        show_copy_button=True,
                        lines=len(CITATION_TEXT.split('\n')),
                    )



    def start_chat(query,history,search_only):
        history = history + [ChatMessage(role="user", content=query)]
        if search_only:
            return (gr.update(interactive = False),gr.update(selected=1),history)
        else:
            return (gr.update(interactive = False),gr.update(selected=2),history)
    
    def finish_chat():
        return gr.update(interactive = True,value = "")
    
    # Initialize visibility states
    summary_visible = False
    relevant_visible = False

    # Functions to toggle visibility
    def toggle_summary_visibility():
        global summary_visible
        summary_visible = not summary_visible
        return gr.update(visible=summary_visible)

    def toggle_relevant_visibility():
        global relevant_visible
        relevant_visible = not relevant_visible
        return gr.update(visible=relevant_visible)


    def change_completion_status(current_state):
        current_state = 1 - current_state
        return current_state
    
    def update_sources_number_display(sources_textbox, figures_cards, current_graphs, papers_html):
        sources_number = sources_textbox.count("<h2>")
        figures_number = figures_cards.count("<h2>")
        graphs_number = current_graphs.count("<iframe")
        papers_number = papers_html.count("<h2>")
        sources_notif_label = f"Sources ({sources_number})"
        figures_notif_label = f"Figures ({figures_number})"
        graphs_notif_label = f"Graphs ({graphs_number})"
        papers_notif_label = f"Papers ({papers_number})"
        recommended_content_notif_label = f"Recommended content ({figures_number + graphs_number + papers_number})"

        return gr.update(label = recommended_content_notif_label), gr.update(label = sources_notif_label), gr.update(label = figures_notif_label), gr.update(label = graphs_notif_label), gr.update(label = papers_notif_label)
    
    (textbox
        .submit(start_chat, [textbox,chatbot, search_only], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
        .then(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, dropdown_external_sources, search_only] ,[chatbot,sources_textbox,output_query,output_language, sources_raw, current_graphs],concurrency_limit = 8,api_name = "chat_textbox")
        .then(finish_chat, None, [textbox],api_name = "finish_chat_textbox")
        # .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_graphs, tab_papers] )
    )

    (examples_hidden
        .change(start_chat, [examples_hidden,chatbot, search_only], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
        .then(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, dropdown_external_sources, search_only] ,[chatbot,sources_textbox,output_query,output_language, sources_raw, current_graphs],concurrency_limit = 8,api_name = "chat_textbox")
        .then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
        # .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_graphs, tab_papers] )
    )


    def change_sample_questions(key):
        index = list(QUESTIONS.keys()).index(key)
        visible_bools = [False] * len(samples)
        visible_bools[index] = True
        return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]


    sources_raw.change(process_figures, inputs=[sources_raw], outputs=[figures_cards, gallery_component])
    
    # update sources numbers
    sources_textbox.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
    figures_cards.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
    current_graphs.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
    papers_html.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])

    # other questions examples
    dropdown_samples.change(change_sample_questions,dropdown_samples,samples)

    # search for papers
    textbox.submit(find_papers,[textbox,after, dropdown_external_sources], [papers_html,citations_network,papers_summary])
    examples_hidden.change(find_papers,[examples_hidden,after,dropdown_external_sources], [papers_html,citations_network,papers_summary])

    # btn_summary.click(toggle_summary_visibility, outputs=summary_popup)
    # btn_relevant_papers.click(toggle_relevant_visibility, outputs=relevant_popup)

    demo.queue()

demo.launch(ssr_mode=False)