Einmalumdiewelt commited on
Commit
84e4d0d
·
1 Parent(s): 1388718

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -4
app.py CHANGED
@@ -4,7 +4,7 @@ import torch
4
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
5
 
6
 
7
- def summarize(inputs,model=model,summary_length=200):
8
  if model=="T5-base":
9
  tokenizer = AutoTokenizer.from_pretrained("Einmalumdiewelt/T5-Base_GNAD")
10
  model = AutoModelForSeq2SeqLM.from_pretrained("Einmalumdiewelt/T5-Base_GNAD")
@@ -43,17 +43,23 @@ examples = [["summarize: Maschinelles Lernen ist ein Oberbegriff für die „kü
43
  # title=title,
44
  # description=description,
45
  # examples=examples)
 
 
46
  txt=gr.Textbox(lines=15, label="I want to summarize this:", placeholder="Paste your German text in here. Don't forget to add the prefix \"summarize: \" for T5-base architecture.")
 
 
 
 
 
47
  out=gr.Textbox(lines=5, label="Here's your summary:")
48
 
49
  interface = gr.Interface(summarize,
50
  inputs=[
51
  txt,
52
  # Selection of models for inference
53
- gr.Dropdown(["T5-base", "Google pegasus", "Facebook bart-large"],label="Choose a fine-tuned architecture."),
54
  # Length of summaries
55
- gr.Slider(50, 250, step=50, label="Select preferred summary length.", value=150)
56
- ],
57
  # ouptut
58
  outputs=out,
59
  title=title,
 
4
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
5
 
6
 
7
+ def summarize(inputs,model,summary_length):
8
  if model=="T5-base":
9
  tokenizer = AutoTokenizer.from_pretrained("Einmalumdiewelt/T5-Base_GNAD")
10
  model = AutoModelForSeq2SeqLM.from_pretrained("Einmalumdiewelt/T5-Base_GNAD")
 
43
  # title=title,
44
  # description=description,
45
  # examples=examples)
46
+
47
+ # text input box
48
  txt=gr.Textbox(lines=15, label="I want to summarize this:", placeholder="Paste your German text in here. Don't forget to add the prefix \"summarize: \" for T5-base architecture.")
49
+ # dropdown model selection
50
+ drop=gr.Dropdown(["T5-base", "Google pegasus", "Facebook bart-large"],label="Choose a fine-tuned architecture.")
51
+ # slider summary length selection
52
+ slide=gr.Slider(50, 250, step=50, label="Select preferred summary length.", value=150)
53
+ # text output box
54
  out=gr.Textbox(lines=5, label="Here's your summary:")
55
 
56
  interface = gr.Interface(summarize,
57
  inputs=[
58
  txt,
59
  # Selection of models for inference
60
+ drop,
61
  # Length of summaries
62
+ slide],
 
63
  # ouptut
64
  outputs=out,
65
  title=title,