Spaces:
Build error
Build error
Commit
·
2241007
1
Parent(s):
c38dbf5
Update app.py
Browse filesadded sliders and different models
app.py
CHANGED
@@ -3,14 +3,22 @@ import torch
|
|
3 |
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("Einmalumdiewelt/T5-Base_GNAD")
|
7 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("Einmalumdiewelt/T5-Base_GNAD")
|
8 |
-
device = "cpu"
|
9 |
-
#"cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model.to(device)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
def summarize(inputs):
|
14 |
#define model inputs
|
15 |
inputs = tokenizer(
|
16 |
inputs,
|
@@ -19,7 +27,7 @@ def summarize(inputs):
|
|
19 |
padding="max_length",
|
20 |
return_tensors='pt').to(device)
|
21 |
#generate preds
|
22 |
-
preds = model.generate(**inputs,max_length=
|
23 |
#we decode the predictions to store them
|
24 |
decoded_predictions = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
25 |
#return
|
@@ -35,17 +43,24 @@ examples = [["summarize: Maschinelles Lernen ist ein Oberbegriff für die „kü
|
|
35 |
# title=title,
|
36 |
# description=description,
|
37 |
# examples=examples)
|
38 |
-
txt=gr.Textbox(lines=
|
39 |
-
out=gr.Textbox(lines=
|
40 |
|
41 |
interface = gr.Interface(summarize,
|
|
|
|
|
42 |
inputs=txt,
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
title=title,
|
45 |
description=description,
|
46 |
-
examples=examples)
|
47 |
|
48 |
-
interface
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
3 |
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
def summarize(inputs,model=model,summary_length=200):
|
8 |
+
if model=="T5-base":
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("Einmalumdiewelt/T5-Base_GNAD")
|
10 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Einmalumdiewelt/T5-Base_GNAD")
|
11 |
+
elif model =="Google pegasus":
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("Einmalumdiewelt/PegasusXSUM_GNAD")
|
13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Einmalumdiewelt/PegasusXSUM_GNAD")
|
14 |
+
elif model =="Facebook bart-large":
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("Einmalumdiewelt/BART_large_CNN_GNAD")
|
16 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Einmalumdiewelt/BART_large_CNN_GNAD")
|
17 |
+
|
18 |
+
device = "CPU"
|
19 |
+
#"cuda" if torch.cuda.is_available() else "CPU"
|
20 |
+
model.to(device)
|
21 |
|
|
|
22 |
#define model inputs
|
23 |
inputs = tokenizer(
|
24 |
inputs,
|
|
|
27 |
padding="max_length",
|
28 |
return_tensors='pt').to(device)
|
29 |
#generate preds
|
30 |
+
preds = model.generate(**inputs,max_length=summary_length,min_length=30)
|
31 |
#we decode the predictions to store them
|
32 |
decoded_predictions = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
33 |
#return
|
|
|
43 |
# title=title,
|
44 |
# description=description,
|
45 |
# examples=examples)
|
46 |
+
txt=gr.Textbox(lines=15, label="I want to summarize this:", placeholder="Paste your German text in here. Don't forget to add the prefix "summarize: " for T5-base architecture.")
|
47 |
+
out=gr.Textbox(lines=5, label="Here's your summary:")
|
48 |
|
49 |
interface = gr.Interface(summarize,
|
50 |
+
[
|
51 |
+
# input
|
52 |
inputs=txt,
|
53 |
+
# Selection of models for inference
|
54 |
+
gr.Dropdown(["T5-base", "Google pegasus", "Facebook bart-large"]),
|
55 |
+
# Length of summaries
|
56 |
+
gr.Slider(50, 250, step=50, label="summary length", value=150),
|
57 |
+
# ouptut
|
58 |
+
outputs=out
|
59 |
+
],
|
60 |
title=title,
|
61 |
description=description,
|
62 |
+
examples=examples)
|
63 |
|
64 |
+
# launch interface
|
65 |
+
if __name__ == "__main__":
|
66 |
+
interface.launch(share=True)
|
|