{ "run_name": "mapping_dataset.fcn50", "data_dir_candidates": [ "/local/shared/data", // try cluster local node first "/data/titane/user/nigirard/data", // Try cluster /data directory "~/data", // In home directory (docker) "/data" // In landsat's /data volume (docker) ], "data_root_partial_dirpath": "mapping_challenge_dataset", "dataset_params": { "small": false }, "num_workers": 10, "data_split_params": { "seed": 0, // Change this to change the random splitting of data in train/val/test "train_fraction": 0.75, "val_fraction": 0.25 // test_fraction is the rest }, "data_aug_params": { "enable": true, "vflip": true, "rotate": true, "color_jitter": true, "device": "cuda" }, "device": "cuda", // Only has effects when mode is val or test. When mode is train, always use CUDA "use_amp": true, // Automatic Mixed Precision switch "backbone_params": { "name": "fcn50", "input_features": 3, "features": 256, "pretrained": false }, "compute_seg": true, "compute_crossfield": true, "seg_params": { "compute_interior": true, "compute_edge": true, "compute_vertex": false }, "loss_params": { "multiloss": { "normalization_params": { "min_samples": 10, // Per GPU "max_samples": 1000 // Per GPU }, "coefs": { "seg_interior": 1, "seg_edge": 1, "seg_vertex": 0, "crossfield_align": 1, "crossfield_align90": 0.2, "crossfield_smooth": 0.2, "seg_interior_crossfield": 0.2, "seg_edge_crossfield": 0.2, "seg_edge_interior": 0.2 } }, "seg_loss_params": { // https://github.com/neptune-ai/open-solution-mapping-challenge/blob/master/neptune.yaml "bce_coef": 1.0, "dice_coef": 0.2, "w0": 50, // From original U-Net paper: distance weight to increase loss between objects "sigma": 10 // From original U-Net paper: distance weight to increase loss between objects } }, "batch_size": 16, // Batch size per GPU. The effective batch size is effective_batch_size=world_size*batch_size "base_lr": 1e-4, // Will be multiplied by the effective_batch_size=world_size*batch_size. "max_lr": 1e-2, // Maximum learning rate "warmup_epochs": 1, // Number of epochs for warmup (learning rate starts at lr*warmup_factor and gradually increases to lr) "warmup_factor": 1e-3, "weight_decay": 0, "dropout_keep_prob": 1.0, // Not used for now "max_epoch": 25, "log_steps": 50, "checkpoint_epoch": 1, "checkpoints_to_keep": 10, // outputs "logs_dirname": "logs", "save_input_output": false, "log_input_output": false, "checkpoints_dirname": "checkpoints", "eval_dirname": "eval" }