''' Author: Egrt Date: 2022-03-19 10:23:48 LastEditors: Egrt LastEditTime: 2022-03-20 14:48:21 FilePath: \Luuu\app.py ''' from gis import GIS import gradio as gr import os os.system('conda install gdal') os.system('pip install requirements.txt') from zipfile import ZipFile gis = GIS() # --------模型推理---------- # def inference(filepath): filename, file_list = gis.detect_image(filepath) with ZipFile("result.zip", "w") as zipObj: zipObj.write(file_list[0], "{}.tif".format(filename+'mask')) zipObj.write(file_list[1], "{}.tif".format(filename)) zipObj.write(file_list[2], "{}.pdf".format(filename)) zipObj.write(file_list[3], "{}.cpg".format(filename)) zipObj.write(file_list[4], "{}.dbf".format(filename)) zipObj.write(file_list[5], "{}.shx".format(filename)) zipObj.write(file_list[6], "{}.shp".format(filename)) zipObj.write(file_list[7], "{}.prj".format(filename)) return "images/result.zip" # --------网页信息---------- # title = "基于帧场学习的多边形建筑提取" description = "目前最先进图像分割模型通常以栅格形式输出分割,但地理信息系统中的应用通常需要矢量多边形。我们在遥感图像中提取建筑物的任务中,将帧场输出添加到深度分割模型中,将预测的帧场与地面实况轮廓对齐,帮助减少深度网络输出与下游任务中输出样式之间的差距。 @Luuuu🐋🐋" article = "
" example_img_dir = 'images' example_img_name = os.listdir(example_img_dir) examples=[[os.path.join(example_img_dir, image_path)] for image_path in example_img_name if image_path.endswith('.png')] gr.Interface( inference, [gr.inputs.Image(type="filepath", label="待检测图片")], gr.outputs.File(label="检测结果"), title=title, description=description, article=article, enable_queue=True, examples=examples ).launch(debug=True)