Egrt commited on
Commit
0efb40e
·
1 Parent(s): e5142a3

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -51
app.py DELETED
@@ -1,51 +0,0 @@
1
- '''
2
- Author: Egrt
3
- Date: 2022-03-19 10:23:48
4
- LastEditors: Egrt
5
- LastEditTime: 2022-03-21 00:05:27
6
- FilePath: \Luuu\app.py
7
- '''
8
-
9
- from gis import GIS
10
- import gradio as gr
11
- from huggingface_hub import hf_hub_download
12
- filepath = hf_hub_download(repo_id="Egrt/Luuuu", filename="GDAL-3.4.1-cp38-cp38-manylinux_2_5_x86_64.whl")
13
- import os
14
- os.system('pip install {}'.format(filepath))
15
- os.system('pip install requirements.txt')
16
- from zipfile import ZipFile
17
- gis = GIS()
18
-
19
-
20
- # --------模型推理---------- #
21
- def inference(filepath):
22
- filename, file_list = gis.detect_image(filepath)
23
- with ZipFile("result.zip", "w") as zipObj:
24
- zipObj.write(file_list[0], "{}.tif".format(filename+'mask'))
25
- zipObj.write(file_list[1], "{}.tif".format(filename))
26
- zipObj.write(file_list[2], "{}.pdf".format(filename))
27
- zipObj.write(file_list[3], "{}.cpg".format(filename))
28
- zipObj.write(file_list[4], "{}.dbf".format(filename))
29
- zipObj.write(file_list[5], "{}.shx".format(filename))
30
- zipObj.write(file_list[6], "{}.shp".format(filename))
31
- zipObj.write(file_list[7], "{}.prj".format(filename))
32
- return "result.zip"
33
-
34
-
35
- # --------网页信息---------- #
36
- title = "基于帧场学习的多边形建筑提取"
37
- description = "目前最先进图像分割模型通常以栅格形式输出分割,但地理信息系统中的应用通常需要矢量多边形。我们在遥感图像中提取建筑物的任务中,将帧场输出添加到深度分割模型中,将预测的帧场与地面实况轮廓对齐,帮助减少深度网络输出与下游任务中输出样式之间的差距。 @Luuuu🐋🐋"
38
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2004.14875' target='_blank'>Polygonization-by-Frame-Field-Learning</a> | <a href='https://github.com/JingyunLiang/SwinIR' target='_blank'>Github Repo</a></p>"
39
- example_img_dir = 'images'
40
- example_img_name = os.listdir(example_img_dir)
41
- examples=[[os.path.join(example_img_dir, image_path)] for image_path in example_img_name if image_path.endswith('.png')]
42
- gr.Interface(
43
- inference,
44
- [gr.inputs.Image(type="filepath", label="待检测图片")],
45
- gr.outputs.File(label="检测结果"),
46
- title=title,
47
- description=description,
48
- article=article,
49
- enable_queue=True,
50
- examples=examples
51
- ).launch(debug=True)