|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class UNetBackbone(nn.Module): |
|
def __init__(self, n_channels, n_hidden_base, no_padding=False): |
|
super(UNetBackbone, self).__init__() |
|
self.no_padding = no_padding |
|
self.inc = InConv(n_channels, n_hidden_base, no_padding) |
|
self.down1 = Down(n_hidden_base, n_hidden_base*2, no_padding) |
|
self.down2 = Down(n_hidden_base*2, n_hidden_base*4, no_padding) |
|
self.down3 = Down(n_hidden_base*4, n_hidden_base*8, no_padding) |
|
self.down4 = Down(n_hidden_base*8, n_hidden_base*16, no_padding) |
|
|
|
self.up1 = Up(n_hidden_base*16, n_hidden_base*8, n_hidden_base*8, no_padding) |
|
self.up2 = Up(n_hidden_base*8, n_hidden_base*4, n_hidden_base*4, no_padding) |
|
self.up3 = Up(n_hidden_base*4, n_hidden_base*2, n_hidden_base*2, no_padding) |
|
self.up4 = Up(n_hidden_base*2, n_hidden_base, n_hidden_base, no_padding) |
|
|
|
def forward(self, x): |
|
x0 = self.inc.forward(x) |
|
x1 = self.down1.forward(x0) |
|
x2 = self.down2.forward(x1) |
|
x3 = self.down3.forward(x2) |
|
y4 = self.down4.forward(x3) |
|
y3 = self.up1.forward(y4, x3) |
|
y2 = self.up2.forward(y3, x2) |
|
y1 = self.up3.forward(y2, x1) |
|
y0 = self.up4.forward(y1, x0) |
|
|
|
result = OrderedDict() |
|
result["out"] = y0 |
|
|
|
return result |
|
|
|
|
|
class DoubleConv(nn.Module): |
|
"""(conv => BN => ReLU) * 2""" |
|
|
|
def __init__(self, in_ch, out_ch, no_padding): |
|
super(DoubleConv, self).__init__() |
|
self.conv = nn.Sequential( |
|
nn.Conv2d(in_ch, out_ch, 3, padding=0 if no_padding else 1, bias=True), |
|
nn.BatchNorm2d(out_ch), |
|
nn.ELU(), |
|
nn.Conv2d(out_ch, out_ch, 3, padding=0 if no_padding else 1, bias=True), |
|
nn.BatchNorm2d(out_ch), |
|
nn.ELU() |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class InConv(nn.Module): |
|
def __init__(self, in_ch, out_ch, no_padding): |
|
super(InConv, self).__init__() |
|
self.conv = DoubleConv(in_ch, out_ch, no_padding) |
|
|
|
def forward(self, x): |
|
x = self.conv.forward(x) |
|
return x |
|
|
|
|
|
class Down(nn.Module): |
|
def __init__(self, in_ch, out_ch, no_padding): |
|
super(Down, self).__init__() |
|
self.mpconv = nn.Sequential( |
|
nn.MaxPool2d(2), |
|
DoubleConv(in_ch, out_ch, no_padding) |
|
) |
|
|
|
def forward(self, x): |
|
x = self.mpconv(x) |
|
return x |
|
|
|
|
|
class Up(nn.Module): |
|
def __init__(self, in_ch_1, in_ch_2, out_ch, no_padding): |
|
super(Up, self).__init__() |
|
self.conv = DoubleConv(in_ch_1 + in_ch_2, out_ch, no_padding) |
|
|
|
def forward(self, x1, x2): |
|
x1 = F.interpolate(x1, scale_factor=2, mode='bilinear', align_corners=False) |
|
|
|
|
|
diffY = x2.size()[2] - x1.size()[2] |
|
diffX = x2.size()[3] - x1.size()[3] |
|
|
|
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, |
|
diffY // 2, diffY - diffY // 2]) |
|
|
|
x = torch.cat([x2, x1], dim=1) |
|
x = self.conv.forward(x) |
|
return x |
|
|