|
from collections import OrderedDict |
|
from torch import nn |
|
from torch.nn import functional as F |
|
import torch |
|
import torchvision |
|
|
|
|
|
def conv3x3(in_, out): |
|
return nn.Conv2d(in_, out, 3, padding=1) |
|
|
|
|
|
class ConvRelu(nn.Module): |
|
def __init__(self, in_, out): |
|
super().__init__() |
|
self.conv = conv3x3(in_, out) |
|
self.activation = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.activation(x) |
|
return x |
|
|
|
|
|
class DecoderBlockV2(nn.Module): |
|
def __init__(self, in_channels, middle_channels, out_channels, is_deconv=True): |
|
super(DecoderBlockV2, self).__init__() |
|
self.in_channels = in_channels |
|
|
|
if is_deconv: |
|
""" |
|
Parameters for Deconvolution were chosen to avoid artifacts, following |
|
link https://distill.pub/2016/deconv-checkerboard/ |
|
""" |
|
|
|
self.block = nn.Sequential( |
|
ConvRelu(in_channels, middle_channels), |
|
nn.ConvTranspose2d(middle_channels, out_channels, kernel_size=4, stride=2, |
|
padding=1), |
|
nn.ReLU(inplace=True) |
|
) |
|
else: |
|
self.block = nn.Sequential( |
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), |
|
nn.Conv2d(in_channels, middle_channels, 3, padding=1, bias=True), |
|
nn.BatchNorm2d(middle_channels), |
|
nn.ELU(), |
|
nn.Conv2d(middle_channels, out_channels, 3, padding=1, bias=True), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ELU() |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) |
|
|
|
|
|
def cat_non_matching(x1, x2): |
|
diffY = x1.size()[2] - x2.size()[2] |
|
diffX = x1.size()[3] - x2.size()[3] |
|
|
|
x2 = F.pad(x2, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) |
|
|
|
|
|
|
|
|
|
|
|
x = torch.cat([x1, x2], dim=1) |
|
return x |
|
|
|
|
|
class UNetResNetBackbone(nn.Module): |
|
"""PyTorch U-Net model using ResNet(34, 101 or 152) encoder. |
|
UNet: https://arxiv.org/abs/1505.04597 |
|
ResNet: https://arxiv.org/abs/1512.03385 |
|
Proposed by Alexander Buslaev: https://www.linkedin.com/in/al-buslaev/ |
|
Args: |
|
encoder_depth (int): Depth of a ResNet encoder (34, 101 or 152). |
|
num_filters (int, optional): Number of filters in the last layer of decoder. Defaults to 32. |
|
dropout_2d (float, optional): Probability factor of dropout layer before output layer. Defaults to 0.2. |
|
pretrained (bool, optional): |
|
False - no pre-trained weights are being used. |
|
True - ResNet encoder is pre-trained on ImageNet. |
|
Defaults to False. |
|
is_deconv (bool, optional): |
|
False: bilinear interpolation is used in decoder. |
|
True: deconvolution is used in decoder. |
|
Defaults to False. |
|
""" |
|
|
|
def __init__(self, encoder_depth, num_filters=32, dropout_2d=0.2, |
|
pretrained=False, is_deconv=False): |
|
super().__init__() |
|
self.dropout_2d = dropout_2d |
|
|
|
if encoder_depth == 34: |
|
self.encoder = torchvision.models.resnet34(pretrained=pretrained) |
|
bottom_channel_nr = 512 |
|
elif encoder_depth == 101: |
|
self.encoder = torchvision.models.resnet101(pretrained=pretrained) |
|
bottom_channel_nr = 2048 |
|
elif encoder_depth == 152: |
|
self.encoder = torchvision.models.resnet152(pretrained=pretrained) |
|
bottom_channel_nr = 2048 |
|
else: |
|
raise NotImplementedError('only 34, 101, 152 version of ResNet are implemented') |
|
|
|
self.pool = nn.MaxPool2d(2, 2) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.conv1 = nn.Sequential(self.encoder.conv1, |
|
self.encoder.bn1, |
|
self.encoder.relu, |
|
self.pool) |
|
|
|
self.conv2 = self.encoder.layer1 |
|
|
|
self.conv3 = self.encoder.layer2 |
|
|
|
self.conv4 = self.encoder.layer3 |
|
|
|
self.conv5 = self.encoder.layer4 |
|
|
|
self.center = DecoderBlockV2(bottom_channel_nr, num_filters * 8 * 2, num_filters * 8, is_deconv) |
|
self.dec5 = DecoderBlockV2(bottom_channel_nr + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv) |
|
self.dec4 = DecoderBlockV2(bottom_channel_nr // 2 + num_filters * 8, num_filters * 8 * 2, num_filters * 8, |
|
is_deconv) |
|
self.dec3 = DecoderBlockV2(bottom_channel_nr // 4 + num_filters * 8, num_filters * 4 * 2, num_filters * 2, |
|
is_deconv) |
|
self.dec2 = DecoderBlockV2(bottom_channel_nr // 8 + num_filters * 2, num_filters * 2 * 2, num_filters * 2 * 2, |
|
is_deconv) |
|
self.dec1 = DecoderBlockV2(num_filters * 2 * 2, num_filters * 2 * 2, num_filters, is_deconv) |
|
|
|
def forward(self, x): |
|
conv1 = self.conv1(x) |
|
conv2 = self.conv2(conv1) |
|
conv3 = self.conv3(conv2) |
|
conv4 = self.conv4(conv3) |
|
conv5 = self.conv5(conv4) |
|
|
|
pool = self.pool(conv5) |
|
center = self.center(pool) |
|
|
|
dec5 = self.dec5(cat_non_matching(conv5, center)) |
|
|
|
dec4 = self.dec4(cat_non_matching(conv4, dec5)) |
|
dec3 = self.dec3(cat_non_matching(conv3, dec4)) |
|
dec2 = self.dec2(cat_non_matching(conv2, dec3)) |
|
dec1 = self.dec1(dec2) |
|
|
|
y = F.dropout2d(dec1, p=self.dropout_2d) |
|
|
|
result = OrderedDict() |
|
result["out"] = y |
|
|
|
return result |
|
|