็™ฝ้นญๅ…ˆ็”Ÿ
init
abd2a81
raw
history blame
9.15 kB
import math
import sys
import time
import skimage.morphology
import skimage.io
from PIL import Image, ImageDraw, ImageFilter
import numpy as np
import shapely.geometry
import shapely.affinity
from lydorn_utils import print_utils
from scipy.ndimage.morphology import distance_transform_edt
import cv2 as cv
from functools import partial
import torch_lydorn.torchvision
class Rasterize(object):
"""Rasterize polygons"""
def __init__(self, fill=True, edges=True, vertices=True, line_width=3, antialiasing=False, return_distances=False,
return_sizes=False):
self.fill = fill
self.edges = edges
self.vertices = vertices
self.line_width = line_width
self.antialiasing = antialiasing
if not return_distances and not return_sizes:
self.raster_func = partial(draw_polygons, fill=self.fill, edges=self.edges, vertices=self.vertices,
line_width=self.line_width, antialiasing=self.antialiasing)
elif return_distances and return_sizes:
self.raster_func = partial(compute_raster_distances_sizes, fill=self.fill, edges=self.edges, vertices=self.vertices,
line_width=self.line_width, antialiasing=self.antialiasing)
else:
raise NotImplementedError
def __call__(self, image, polygons):
"""
If distances is True, also returns distances image
(sum of distance to closest and second-closest annotation for each pixel).
Same for sizes (size of annotation the pixel belongs to).
"""
size = (image.shape[0], image.shape[1])
out = self.raster_func(polygons, size)
return out
def compute_raster_distances_sizes(polygons, shape, fill=True, edges=True, vertices=True, line_width=3, antialiasing=False):
"""
Returns:
- distances: sum of distance to closest and second-closest annotation for each pixel.
- size_weights: relative size (normalized by image area) of annotation the pixel belongs to.
"""
assert type(polygons) == list, "polygons should be a list"
# Filter out zero-area polygons
polygons = [polygon for polygon in polygons if 0 < polygon.area]
# tic = time.time()
channel_count = fill + edges + vertices
polygons_raster = np.zeros((*shape, channel_count), dtype=np.uint8)
distance_maps = np.ones((*shape, len(polygons))) # Init with max value (distances are normed)
sizes = np.ones(shape) # Init with max value (sizes are normed)
image_area = shape[0] * shape[1]
for i, polygon in enumerate(polygons):
minx, miny, maxx, maxy = polygon.bounds
mini = max(0, math.floor(miny) - 2*line_width)
minj = max(0, math.floor(minx) - 2*line_width)
maxi = min(polygons_raster.shape[0], math.ceil(maxy) + 2*line_width)
maxj = min(polygons_raster.shape[1], math.ceil(maxx) + 2*line_width)
bbox_shape = (maxi - mini, maxj - minj)
bbox_polygon = shapely.affinity.translate(polygon, xoff=-minj, yoff=-mini)
bbox_raster = draw_polygons([bbox_polygon], bbox_shape, fill, edges, vertices, line_width, antialiasing)
polygons_raster[mini:maxi, minj:maxj] = np.maximum(polygons_raster[mini:maxi, minj:maxj], bbox_raster)
bbox_mask = 0 < np.sum(bbox_raster, axis=2) # Polygon interior + edge + vertex
if bbox_mask.max(): # Make sure mask is not empty
polygon_mask = np.zeros(shape, dtype=np.bool)
polygon_mask[mini:maxi, minj:maxj] = bbox_mask
polygon_dist = cv.distanceTransform(1 - polygon_mask.astype(np.uint8), distanceType=cv.DIST_L2, maskSize=cv.DIST_MASK_5,
dstType=cv.CV_64F)
polygon_dist /= (polygon_mask.shape[0] + polygon_mask.shape[1]) # Normalize dist
distance_maps[:, :, i] = polygon_dist
selem = skimage.morphology.disk(line_width)
bbox_dilated_mask = skimage.morphology.binary_dilation(bbox_mask, selem=selem)
sizes[mini:maxi, minj:maxj][bbox_dilated_mask] = polygon.area / image_area
polygons_raster = np.clip(polygons_raster, 0, 255)
# skimage.io.imsave("polygons_raster.png", polygons_raster)
if edges:
edge_channels = -1 + fill + edges
# Remove border edges because they correspond to cut buildings:
polygons_raster[:line_width, :, edge_channels] = 0
polygons_raster[-line_width:, :, edge_channels] = 0
polygons_raster[:, :line_width, edge_channels] = 0
polygons_raster[:, -line_width:, edge_channels] = 0
distances = compute_distances(distance_maps)
# skimage.io.imsave("distances.png", distances)
distances = distances.astype(np.float16)
sizes = sizes.astype(np.float16)
# toc = time.time()
# print(f"Rasterize {len(polygons)} polygons: {toc - tic}s")
return polygons_raster, distances, sizes
def compute_distances(distance_maps):
distance_maps.sort(axis=2)
distance_maps = distance_maps[:, :, :2]
distances = np.sum(distance_maps, axis=2)
return distances
def draw_polygons(polygons, shape, fill=True, edges=True, vertices=True, line_width=3, antialiasing=False):
assert type(polygons) == list, "polygons should be a list"
assert type(polygons[0]) == shapely.geometry.Polygon, "polygon should be a shapely.geometry.Polygon"
if antialiasing:
draw_shape = (2 * shape[0], 2 * shape[1])
polygons = [shapely.affinity.scale(polygon, xfact=2.0, yfact=2.0, origin=(0, 0)) for polygon in polygons]
line_width *= 2
else:
draw_shape = shape
# Channels
fill_channel_index = 0 # Always first channel
edges_channel_index = fill # If fill == True, take second channel. If not then take first
vertices_channel_index = fill + edges # Same principle as above
channel_count = fill + edges + vertices
im_draw_list = []
for channel_index in range(channel_count):
im = Image.new("L", (draw_shape[1], draw_shape[0]))
im_px_access = im.load()
draw = ImageDraw.Draw(im)
im_draw_list.append((im, draw))
for polygon in polygons:
if fill:
draw = im_draw_list[fill_channel_index][1]
draw.polygon(polygon.exterior.coords, fill=255)
for interior in polygon.interiors:
draw.polygon(interior.coords, fill=0)
if edges:
draw = im_draw_list[edges_channel_index][1]
draw.line(polygon.exterior.coords, fill=255, width=line_width)
for interior in polygon.interiors:
draw.line(interior.coords, fill=255, width=line_width)
if vertices:
draw = im_draw_list[vertices_channel_index][1]
for vertex in polygon.exterior.coords:
torch_lydorn.torchvision.transforms.functional.draw_circle(draw, vertex, line_width / 2, fill=255)
for interior in polygon.interiors:
for vertex in interior.coords:
torch_lydorn.torchvision.transforms.functional.draw_circle(draw, vertex, line_width / 2, fill=255)
im_list = []
if antialiasing:
# resize images:
for im_draw in im_draw_list:
resize_shape = (shape[1], shape[0])
im_list.append(im_draw[0].resize(resize_shape, Image.BILINEAR))
else:
for im_draw in im_draw_list:
im_list.append(im_draw[0])
# Convert image to numpy array with the right number of channels
array_list = [np.array(im) for im in im_list]
array = np.stack(array_list, axis=-1)
return array
def _rasterize_coco(image, polygons):
import pycocotools.mask as cocomask
image_size = image.shape[:2]
mask = np.zeros(image_size)
for polygon in polygons:
rle = cocomask.frPyObjects([np.array(polygon.exterior.coords).reshape(-1)], image_size[0], image_size[1])
m = cocomask.decode(rle)
for i in range(m.shape[-1]):
mi = m[:, :, i]
mi = mi.reshape(image_size)
mask += mi
return mask
def _test():
import skimage.io
rasterize = Rasterize(fill=True, edges=False, vertices=False, line_width=2, antialiasing=True, return_distances=True, return_sizes=True)
image = np.zeros((300, 300))
polygons = [
shapely.geometry.Polygon([
[10.5, 10.5],
[100, 10],
[100, 150],
[10, 100],
[10, 10],
]),
shapely.geometry.Polygon([
[10+150, 10],
[100+150, 10],
[100+150, 100],
[10+150, 100],
[10+150, 10],
]),
]
polygons_raster, distances, size_weights = rasterize(image, polygons)
skimage.io.imsave('rasterize.polygons_raster.png', polygons_raster)
skimage.io.imsave('rasterize.distances.png', distances)
skimage.io.imsave('rasterize.size_weights.png', size_weights)
# Rasterize with pycocotools
coco_mask = _rasterize_coco(image, polygons)
skimage.io.imsave('rasterize.coco_mask.png', coco_mask)
if __name__ == "__main__":
_test()