File size: 73,126 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 |
import sys
import time
from functools import partial
import math
import random
import numpy as np
import scipy.spatial
from PIL import Image, ImageDraw, ImageFilter
import skimage.draw
import skimage
from descartes import PolygonPatch
from matplotlib.collections import PatchCollection
from multiprocess import Pool
import multiprocess
from tqdm import tqdm
from lydorn_utils import python_utils
if python_utils.module_exists("skimage.measure"):
from skimage.measure import approximate_polygon
if python_utils.module_exists("shapely"):
import shapely.geometry
import shapely.affinity
import shapely.ops
import shapely.prepared
import shapely.validation
def is_polygon_clockwise(polygon):
rolled_polygon = np.roll(polygon, shift=1, axis=0)
double_signed_area = np.sum((rolled_polygon[:, 0] - polygon[:, 0]) * (rolled_polygon[:, 1] + polygon[:, 1]))
if 0 < double_signed_area:
return True
else:
return False
def orient_polygon(polygon, orientation="CW"):
poly_is_orientated_cw = is_polygon_clockwise(polygon)
if (poly_is_orientated_cw and orientation == "CCW") or (not poly_is_orientated_cw and orientation == "CW"):
return np.flip(polygon, axis=0)
else:
return polygon
def orient_polygons(polygons, orientation="CW"):
return [orient_polygon(polygon, orientation=orientation) for polygon in polygons]
def raster_to_polygon(image, vertex_count):
contours = skimage.measure.find_contours(image, 0.5)
contour = np.empty_like(contours[0])
contour[:, 0] = contours[0][:, 1]
contour[:, 1] = contours[0][:, 0]
# Simplify until vertex_count
tolerance = 0.1
tolerance_step = 0.1
simplified_contour = contour
while 1 + vertex_count < len(simplified_contour):
simplified_contour = approximate_polygon(contour, tolerance=tolerance)
tolerance += tolerance_step
simplified_contour = simplified_contour[:-1]
# plt.imshow(image, cmap="gray")
# plot_polygon(simplified_contour, draw_labels=False)
# plt.show()
return simplified_contour
def l2diffs(polygon1, polygon2):
"""
Computes vertex-wise L2 difference between the two polygons.
As the two polygons may not have the same starting vertex,
all shifts are considred and the shift resulting in the minimum mean L2 difference is chosen
:param polygon1:
:param polygon2:
:return:
"""
# Make polygons of equal length
if len(polygon1) != len(polygon2):
while len(polygon1) < len(polygon2):
polygon1 = np.append(polygon1, [polygon1[-1, :]], axis=0)
while len(polygon2) < len(polygon1):
polygon2 = np.append(polygon2, [polygon2[-1, :]], axis=0)
vertex_count = len(polygon1)
def naive_l2diffs(polygon1, polygon2):
naive_l2diffs_result = np.sqrt(np.power(np.sum(polygon1 - polygon2, axis=1), 2))
return naive_l2diffs_result
min_l2_diffs = naive_l2diffs(polygon1, polygon2)
min_mean_l2_diffs = np.mean(min_l2_diffs, axis=0)
for i in range(1, vertex_count):
current_naive_l2diffs = naive_l2diffs(np.roll(polygon1, shift=i, axis=0), polygon2)
current_naive_mean_l2diffs = np.mean(current_naive_l2diffs, axis=0)
if current_naive_mean_l2diffs < min_mean_l2_diffs:
min_l2_diffs = current_naive_l2diffs
min_mean_l2_diffs = current_naive_mean_l2diffs
return min_l2_diffs
def intersect_polygons(simple_polygon, multi_polygon):
"""
:param input_polygon:
:param target_polygon:
:return: List of a simple polygon: [poly1, poly2,...] with a multi polygon: [[(x1, y1), (x2, y2), ...], [...]]
"""
poly1 = shapely.geometry.Polygon(simple_polygon).buffer(0)
poly2 = shapely.geometry.MultiPolygon(shapely.geometry.Polygon(polygon) for polygon in multi_polygon).buffer(0)
intersection_poly = poly1.intersection(poly2)
if 0 < intersection_poly.area:
if intersection_poly.type == 'Polygon':
coords = intersection_poly.exterior.coords
return [coords]
elif intersection_poly.type == 'MultiPolygon':
ret_coords = []
for poly in intersection_poly:
coords = poly.exterior.coords
ret_coords.append(coords)
return ret_coords
return None
def check_intersection_with_polygon(input_polygon, target_polygon):
poly1 = shapely.geometry.Polygon(input_polygon).buffer(0)
poly2 = shapely.geometry.Polygon(target_polygon).buffer(0)
intersection_poly = poly1.intersection(poly2)
intersection_area = intersection_poly.area
is_intersection = 0 < intersection_area
return is_intersection
def check_intersection_with_polygons(input_polygon, target_polygons):
"""
Returns True if there is an intersection with at least one polygon in target_polygons
:param input_polygon:
:param target_polygons:
:return:
"""
for target_polygon in target_polygons:
if check_intersection_with_polygon(input_polygon, target_polygon):
return True
return False
def polygon_area(polygon):
poly = shapely.geometry.Polygon(polygon).buffer(0)
return poly.area
def polygon_union(polygon1, polygon2):
poly1 = shapely.geometry.Polygon(polygon1).buffer(0)
poly2 = shapely.geometry.Polygon(polygon2).buffer(0)
union_poly = poly1.union(poly2)
return np.array(union_poly.exterior.coords)
def polygon_iou(polygon1, polygon2):
poly1 = shapely.geometry.Polygon(polygon1).buffer(0)
poly2 = shapely.geometry.Polygon(polygon2).buffer(0)
intersection_poly = poly1.intersection(poly2)
union_poly = poly1.union(poly2)
intersection_area = intersection_poly.area
union_area = union_poly.area
if union_area:
iou = intersection_area / union_area
else:
iou = 0
return iou
def generate_polygon(cx, cy, ave_radius, irregularity, spikeyness, vertex_count):
"""
Start with the centre of the polygon at cx, cy,
then creates the polygon by sampling points on a circle around the centre.
Random noise is added by varying the angular spacing between sequential points,
and by varying the radial distance of each point from the centre.
Params:
cx, cy - coordinates of the "centre" of the polygon
ave_radius - in px, the average radius of this polygon, this roughly controls how large the polygon is,
really only useful for order of magnitude.
irregularity - [0,1] indicating how much variance there is in the angular spacing of vertices. [0,1] will map to
[0, 2 * pi / vertex_count]
spikeyness - [0,1] indicating how much variance there is in each vertex from the circle of radius ave_radius.
[0,1] will map to [0, ave_radius]
vertex_count - self-explanatory
Returns a list of vertices, in CCW order.
"""
irregularity = clip(irregularity, 0, 1) * 2 * math.pi / vertex_count
spikeyness = clip(spikeyness, 0, 1) * ave_radius
# generate n angle steps
angle_steps = []
lower = (2 * math.pi / vertex_count) - irregularity
upper = (2 * math.pi / vertex_count) + irregularity
angle_sum = 0
for i in range(vertex_count):
tmp = random.uniform(lower, upper)
angle_steps.append(tmp)
angle_sum = angle_sum + tmp
# normalize the steps so that point 0 and point n+1 are the same
k = angle_sum / (2 * math.pi)
for i in range(vertex_count):
angle_steps[i] = angle_steps[i] / k
# now generate the points
points = []
angle = random.uniform(0, 2 * math.pi)
for i in range(vertex_count):
r_i = clip(random.gauss(ave_radius, spikeyness), 0, 2 * ave_radius)
x = cx + r_i * math.cos(angle)
y = cy + r_i * math.sin(angle)
points.append((x, y))
angle = angle + angle_steps[i]
return points
def clip(x, mini, maxi):
if mini > maxi:
return x
elif x < mini:
return mini
elif x > maxi:
return maxi
else:
return x
def scale_bounding_box(bounding_box, scale):
half_width = math.ceil((bounding_box[2] - bounding_box[0]) * scale / 2)
half_height = math.ceil((bounding_box[3] - bounding_box[1]) * scale / 2)
center = [round((bounding_box[0] + bounding_box[2]) / 2), round((bounding_box[1] + bounding_box[3]) / 2)]
scaled_bounding_box = [int(center[0] - half_width), int(center[1] - half_height), int(center[0] + half_width),
int(center[1] + half_height)]
return scaled_bounding_box
def pad_bounding_box(bbox, pad):
return [bbox[0] + pad, bbox[1] + pad, bbox[2] - pad, bbox[3] - pad]
def compute_bounding_box(polygon, scale=1, boundingbox_margin=0, fit=None):
# Compute base bounding box
bounding_box = [np.min(polygon[:, 0]), np.min(polygon[:, 1]), np.max(polygon[:, 0]), np.max(polygon[:, 1])]
# Scale
half_width = math.ceil((bounding_box[2] - bounding_box[0]) * scale / 2)
half_height = math.ceil((bounding_box[3] - bounding_box[1]) * scale / 2)
# Add margin
half_width += boundingbox_margin
half_height += boundingbox_margin
# Compute square bounding box
if fit == "square":
half_width = half_height = max(half_width, half_height)
center = [round((bounding_box[0] + bounding_box[2]) / 2), round((bounding_box[1] + bounding_box[3]) / 2)]
bounding_box = [int(center[0] - half_width), int(center[1] - half_height), int(center[0] + half_width),
int(center[1] + half_height)]
return bounding_box
def compute_patch(polygon, patch_size):
centroid = np.mean(polygon, axis=0)
half_height = half_width = patch_size / 2
bounding_box = [math.ceil(centroid[0] - half_width), math.ceil(centroid[1] - half_height),
math.ceil(centroid[0] + half_width), math.ceil(centroid[1] + half_height)]
return bounding_box
def bounding_box_within_bounds(bounding_box, bounds):
return bounds[0] <= bounding_box[0] and bounds[1] <= bounding_box[1] and bounding_box[2] <= bounds[2] and \
bounding_box[3] <= bounds[3]
def vertex_within_bounds(vertex, bounds):
return bounds[0] <= vertex[0] <= bounds[2] and \
bounds[1] <= vertex[1] <= bounds[3]
def edge_within_bounds(edge, bounds):
return vertex_within_bounds(edge[0], bounds) and vertex_within_bounds(edge[1], bounds)
def bounding_box_area(bounding_box):
return (bounding_box[2] - bounding_box[0]) * (bounding_box[3] - bounding_box[1])
def convert_to_image_patch_space(polygon_image_space, bounding_box):
polygon_image_patch_space = np.empty_like(polygon_image_space)
polygon_image_patch_space[:, 0] = polygon_image_space[:, 0] - bounding_box[0]
polygon_image_patch_space[:, 1] = polygon_image_space[:, 1] - bounding_box[1]
return polygon_image_patch_space
def translate_polygons(polygons, translation):
for polygon in polygons:
polygon[:, 0] += translation[0]
polygon[:, 1] += translation[1]
return polygons
def strip_redundant_vertex(vertices, epsilon=1):
assert len(vertices.shape) == 2 # Is a polygon
new_vertices = vertices
if 1 < vertices.shape[0]:
if np.sum(np.absolute(vertices[0, :] - vertices[-1, :])) < epsilon:
new_vertices = vertices[:-1, :]
return new_vertices
def remove_doubles(vertices, epsilon=0.1):
dists = np.linalg.norm(np.roll(vertices, -1, axis=0) - vertices, axis=-1)
new_vertices = vertices[epsilon < dists]
return new_vertices
def simplify_polygon(polygon, tolerance=1):
approx_polygon = approximate_polygon(polygon, tolerance=tolerance)
return approx_polygon
def simplify_polygons(polygons, tolerance=1):
approx_polygons = []
for polygon in polygons:
approx_polygon = approximate_polygon(polygon, tolerance=tolerance)
approx_polygons.append(approx_polygon)
return approx_polygons
def pad_polygon(vertices, target_length):
assert len(vertices.shape) == 2 # Is a polygon
assert vertices.shape[0] <= target_length
padding_length = target_length - vertices.shape[0]
padding = np.tile(vertices[-1], [padding_length, 1])
padded_vertices = np.append(vertices, padding, axis=0)
return padded_vertices
def compute_diameter(polygon):
dist = scipy.spatial.distance.cdist(polygon, polygon)
return dist.max()
def plot_polygon(polygon, color=None, draw_labels=True, label_direction=1, indexing="xy", axis=None):
if python_utils.module_exists("matplotlib.pyplot"):
import matplotlib.pyplot as plt
if axis is None:
axis = plt.gca()
polygon_closed = np.append(polygon, [polygon[0, :]], axis=0)
if indexing == "xy=":
axis.plot(polygon_closed[:, 0], polygon_closed[:, 1], color=color, linewidth=3.0)
elif indexing == "ij":
axis.plot(polygon_closed[:, 1], polygon_closed[:, 0], color=color, linewidth=3.0)
else:
print("WARNING: Invalid indexing argument")
if draw_labels:
labels = range(1, polygon.shape[0] + 1)
for label, x, y in zip(labels, polygon[:, 0], polygon[:, 1]):
axis.annotate(
label,
xy=(x, y), xytext=(-20 * label_direction, 20 * label_direction),
textcoords='offset points', ha='right', va='bottom',
bbox=dict(boxstyle='round,pad=0.25', fc=color, alpha=0.75),
arrowprops=dict(arrowstyle='->', color=color, connectionstyle='arc3,rad=0'))
def plot_polygons(polygons, color=None, draw_labels=True, label_direction=1, indexing="xy", axis=None):
for polygon in polygons:
plot_polygon(polygon, color=color, draw_labels=draw_labels, label_direction=label_direction, indexing=indexing,
axis=axis)
def compute_edge_normal(edge):
normal = np.array([- (edge[1][1] - edge[0][1]),
edge[1][0] - edge[0][0]])
normal_norm = np.sqrt(np.sum(np.square(normal)))
normal /= normal_norm
return normal
def compute_vector_angle(x, y):
if x < 0.0:
slope = y / x
angle = np.pi + np.arctan(slope)
elif 0.0 < x:
slope = y / x
angle = np.arctan(slope)
else:
if 0 < y:
angle = np.pi / 2
else:
angle = 3 * np.pi / 2
if angle < 0.0:
angle += 2 * np.pi
return angle
def compute_edge_normal_angle_edge(edge):
normal = compute_edge_normal(edge)
normal_x = normal[1]
normal_y = normal[0]
angle = compute_vector_angle(normal_x, normal_y)
return angle
def polygon_in_bounding_box(polygon, bounding_box):
"""
Returns True if all vertices of polygons are inside bounding_box
:param polygon: [N, 2]
:param bounding_box: [row_min, col_min, row_max, col_max]
:return:
"""
result = np.all(
np.logical_and(
np.logical_and(bounding_box[0] <= polygon[:, 0], polygon[:, 0] <= bounding_box[2]),
np.logical_and(bounding_box[1] <= polygon[:, 1], polygon[:, 1] <= bounding_box[3])
)
)
return result
def filter_polygons_in_bounding_box(polygons, bounding_box):
"""
Only keep polygons that are fully inside bounding_box
:param polygons: [shape(N, 2), ...]
:param bounding_box: [row_min, col_min, row_max, col_max]
:return:
"""
filtered_polygons = []
for polygon in polygons:
if polygon_in_bounding_box(polygon, bounding_box):
filtered_polygons.append(polygon)
return filtered_polygons
def transform_polygon_to_bounding_box_space(polygon, bounding_box):
"""
:param polygon: shape(N, 2)
:param bounding_box: [row_min, col_min, row_max, col_max]
:return:
"""
assert len(polygon.shape) and polygon.shape[1] == 2, "polygon should have shape (N, 2), not shape {}".format(
polygon.shape)
assert len(bounding_box) == 4, "bounding_box should have 4 elements: [row_min, col_min, row_max, col_max]"
transformed_polygon = polygon.copy()
transformed_polygon[:, 0] -= bounding_box[0]
transformed_polygon[:, 1] -= bounding_box[1]
return transformed_polygon
def transform_polygons_to_bounding_box_space(polygons, bounding_box):
transformed_polygons = []
for polygon in polygons:
transformed_polygons.append(transform_polygon_to_bounding_box_space(polygon, bounding_box))
return transformed_polygons
def crop_polygon_to_patch(polygon, bounding_box):
return transform_polygon_to_bounding_box_space(polygon, bounding_box)
def crop_polygon_to_patch_if_touch(polygon, bounding_box):
assert type(polygon) == np.ndarray, "polygon should be a numpy array, not {}".format(type(polygon))
assert len(polygon.shape) == 2 and polygon.shape[1] == 2, "polygon should be of shape (N, 2), not {}".format(
polygon.shape)
# Verify that at least one vertex is inside bounding_box
polygon_touches_patch = np.any(
np.logical_and(
np.logical_and(bounding_box[0] <= polygon[:, 0], polygon[:, 0] <= bounding_box[2]),
np.logical_and(bounding_box[1] <= polygon[:, 1], polygon[:, 1] <= bounding_box[3])
)
)
if polygon_touches_patch:
return crop_polygon_to_patch(polygon, bounding_box)
else:
return None
def crop_polygons_to_patch_if_touch(polygons, bounding_box, return_indices=False):
assert type(polygons) == list, "polygons should be a list"
if return_indices:
indices = []
cropped_polygons = []
for i, polygon in enumerate(polygons):
cropped_polygon = crop_polygon_to_patch_if_touch(polygon, bounding_box)
if cropped_polygon is not None:
cropped_polygons.append(cropped_polygon)
if return_indices:
indices.append(i)
if return_indices:
return cropped_polygons, indices
else:
return cropped_polygons
def crop_polygons_to_patch(polygons, bounding_box):
cropped_polygons = []
for polygon in polygons:
cropped_polygon = crop_polygon_to_patch(polygon, bounding_box)
if cropped_polygon is not None:
cropped_polygons.append(cropped_polygon)
return cropped_polygons
def patch_polygons(polygons, minx, miny, maxx, maxy):
"""
Filters out polygons that do not touch the bbox and translate those that do to the box's coordinate system.
@param polygons: [shapely.geometry.Polygon, ...]
@param maxy:
@param maxx:
@param miny:
@param minx:
@return: [shapely.geometry.Polygon, ...]
"""
assert type(polygons) == list, "polygons should be a list"
if len(polygons) == 0:
return polygons
assert type(polygons[0]) == shapely.geometry.Polygon, \
f"Items of the polygons list should be of type shapely.geometry.Polygon, not {type(polygons[0])}"
box_polygon = shapely.geometry.box(minx, miny, maxx, maxy)
polygons = filter(box_polygon.intersects, polygons)
polygons = map(partial(shapely.affinity.translate, xoff=-minx, yoff=-miny), polygons)
return list(polygons)
def polygon_remove_holes(polygon):
polygon_no_holes = []
for coords in polygon:
if not np.isnan(coords[0]) and not np.isnan(coords[1]):
polygon_no_holes.append(coords)
else:
break
return np.array(polygon_no_holes)
def polygons_remove_holes(polygons):
gt_polygons_no_holes = []
for polygon in polygons:
gt_polygons_no_holes.append(polygon_remove_holes(polygon))
return gt_polygons_no_holes
def apply_batch_disp_map_to_polygons(pred_disp_field_map_batch, disp_polygons_batch):
"""
:param pred_disp_field_map_batch: shape(batch_size, height, width, 2)
:param disp_polygons_batch: shape(batch_size, polygon_count, vertex_count, 2)
:return:
"""
# Apply all displacements at once
batch_count = pred_disp_field_map_batch.shape[0]
row_count = pred_disp_field_map_batch.shape[1]
col_count = pred_disp_field_map_batch.shape[2]
disp_polygons_batch_int = np.round(disp_polygons_batch).astype(np.int)
# Clip coordinates to the field map:
disp_polygons_batch_int_nearest_valid_field = np.maximum(0, disp_polygons_batch_int)
disp_polygons_batch_int_nearest_valid_field[:, :, :, 0] = np.minimum(
disp_polygons_batch_int_nearest_valid_field[:, :, :, 0], row_count - 1)
disp_polygons_batch_int_nearest_valid_field[:, :, :, 1] = np.minimum(
disp_polygons_batch_int_nearest_valid_field[:, :, :, 1], col_count - 1)
aligned_disp_polygons_batch = disp_polygons_batch.copy()
for batch_index in range(batch_count):
mask = ~np.isnan(disp_polygons_batch[batch_index, :, :, 0]) # Checking one coordinate is enough
aligned_disp_polygons_batch[batch_index, mask, 0] += pred_disp_field_map_batch[batch_index,
disp_polygons_batch_int_nearest_valid_field[
batch_index, mask, 0],
disp_polygons_batch_int_nearest_valid_field[
batch_index, mask, 1], 0].flatten()
aligned_disp_polygons_batch[batch_index, mask, 1] += pred_disp_field_map_batch[batch_index,
disp_polygons_batch_int_nearest_valid_field[
batch_index, mask, 0],
disp_polygons_batch_int_nearest_valid_field[
batch_index, mask, 1], 1].flatten()
return aligned_disp_polygons_batch
def apply_disp_map_to_polygons(disp_field_map, polygons):
"""
:param disp_field_map: shape(height, width, 2)
:param polygon_list: [shape(N, 2), shape(M, 2), ...]
:return:
"""
disp_field_map_batch = np.expand_dims(disp_field_map, axis=0)
disp_polygons = []
for polygon in polygons:
polygon_batch = np.expand_dims(np.expand_dims(polygon, axis=0), axis=0) # Add batch and polygon_count dims
disp_polygon_batch = apply_batch_disp_map_to_polygons(disp_field_map_batch, polygon_batch)
disp_polygon_batch = disp_polygon_batch[0, 0] # Remove batch and polygon_count dims
disp_polygons.append(disp_polygon_batch)
return disp_polygons
# This next function is somewhat redundant with apply_disp_map_to_polygons... (but displaces in the opposite direction)
def apply_displacement_field_to_polygons(polygons, disp_field_map):
disp_polygons = []
for polygon in polygons:
mask_nans = np.isnan(polygon) # Will be necessary when polygons with holes are handled
polygon_int = np.round(polygon).astype(np.int)
polygon_int_clipped = np.maximum(0, polygon_int)
polygon_int_clipped[:, 0] = np.minimum(disp_field_map.shape[0] - 1, polygon_int_clipped[:, 0])
polygon_int_clipped[:, 1] = np.minimum(disp_field_map.shape[1] - 1, polygon_int_clipped[:, 1])
disp_polygon = polygon.copy()
disp_polygon[~mask_nans[:, 0], 0] -= disp_field_map[polygon_int_clipped[~mask_nans[:, 0], 0],
polygon_int_clipped[~mask_nans[:, 0], 1], 0]
disp_polygon[~mask_nans[:, 1], 1] -= disp_field_map[polygon_int_clipped[~mask_nans[:, 1], 0],
polygon_int_clipped[~mask_nans[:, 1], 1], 1]
disp_polygons.append(disp_polygon)
return disp_polygons
def apply_displacement_fields_to_polygons(polygons, disp_field_maps):
disp_field_map_count = disp_field_maps.shape[0]
disp_polygons_list = []
for i in range(disp_field_map_count):
disp_polygons = apply_displacement_field_to_polygons(polygons, disp_field_maps[i, :, :, :])
disp_polygons_list.append(disp_polygons)
return disp_polygons_list
def draw_line(shape, line, width, blur_radius=0):
im = Image.new("L", (shape[1], shape[0]))
# im_px_access = im.load()
draw = ImageDraw.Draw(im)
vertex_list = []
for coords in line:
vertex = (coords[1], coords[0])
vertex_list.append(vertex)
draw.line(vertex_list, fill=255, width=width)
if 0 < blur_radius:
im = im.filter(ImageFilter.GaussianBlur(radius=blur_radius))
array = np.array(im) / 255
return array
def draw_triangle(shape, triangle, blur_radius=0):
im = Image.new("L", (shape[1], shape[0]))
# im_px_access = im.load()
draw = ImageDraw.Draw(im)
vertex_list = []
for coords in triangle:
vertex = (coords[1], coords[0])
vertex_list.append(vertex)
draw.polygon(vertex_list, fill=255)
if 0 < blur_radius:
im = im.filter(ImageFilter.GaussianBlur(radius=blur_radius))
array = np.array(im) / 255
return array
def draw_polygon(polygon, shape, fill=True, edges=True, vertices=True, line_width=3):
# TODO: handle holes in polygons
im = Image.new("RGB", (shape[1], shape[0]))
im_px_access = im.load()
draw = ImageDraw.Draw(im)
vertex_list = []
for coords in polygon:
vertex = (coords[1], coords[0])
if not np.isnan(vertex[0]) and not np.isnan(vertex[1]):
vertex_list.append(vertex)
else:
break
if edges:
draw.line(vertex_list, fill=(0, 255, 0), width=line_width)
if fill:
draw.polygon(vertex_list, fill=(255, 0, 0))
if vertices:
draw.point(vertex_list, fill=(0, 0, 255))
# Convert image to numpy array with the right number of channels
array = np.array(im)
selection = [fill, edges, vertices]
selected_array = array[:, :, selection]
return selected_array
def _draw_circle(draw, center, radius, fill):
draw.ellipse([center[0] - radius,
center[1] - radius,
center[0] + radius,
center[1] + radius], fill=fill, outline=None)
def draw_polygons(polygons, shape, fill=True, edges=True, vertices=True, line_width=3, antialiasing=False):
# TODO: handle holes in polygons
polygons = polygons_remove_holes(polygons)
polygons = polygons_close(polygons)
if antialiasing:
draw_shape = (2 * shape[0], 2 * shape[1])
else:
draw_shape = shape
# Channels
fill_channel_index = 0 # Always first channel
edges_channel_index = fill # If fill == True, take second channel. If not then take first
vertices_channel_index = fill + edges # Same principle as above
channel_count = fill + edges + vertices
im_draw_list = []
for channel_index in range(channel_count):
im = Image.new("L", (draw_shape[1], draw_shape[0]))
im_px_access = im.load()
draw = ImageDraw.Draw(im)
im_draw_list.append((im, draw))
for polygon in polygons:
if antialiasing:
polygon *= 2
vertex_list = []
for coords in polygon:
vertex_list.append((coords[1], coords[0]))
if fill:
draw = im_draw_list[fill_channel_index][1]
draw.polygon(vertex_list, fill=255)
if edges:
draw = im_draw_list[edges_channel_index][1]
draw.line(vertex_list, fill=255, width=line_width)
if vertices:
draw = im_draw_list[vertices_channel_index][1]
for vertex in vertex_list:
_draw_circle(draw, vertex, line_width / 2, fill=255)
im_list = []
if antialiasing:
# resize images:
for im_draw in im_draw_list:
resize_shape = (shape[1], shape[0])
im_list.append(im_draw[0].resize(resize_shape, Image.BILINEAR))
else:
for im_draw in im_draw_list:
im_list.append(im_draw[0])
# Convert image to numpy array with the right number of channels
array_list = [np.array(im) for im in im_list]
array = np.stack(array_list, axis=-1)
return array
def draw_polygon_map(polygons, shape, fill=True, edges=True, vertices=True, line_width=3):
"""
Alias for draw_polygon function
:param polygons:
:param shape:
:param fill:
:param edges:
:param vertices:
:param line_width:
:return:
"""
return draw_polygons(polygons, shape, fill=fill, edges=edges, vertices=vertices, line_width=line_width)
def draw_polygon_maps(polygons_list, shape, fill=True, edges=True, vertices=True, line_width=3):
polygon_maps_list = []
for polygons in polygons_list:
polygon_map = draw_polygon_map(polygons, shape, fill=fill, edges=edges, vertices=vertices,
line_width=line_width)
polygon_maps_list.append(polygon_map)
disp_field_maps = np.stack(polygon_maps_list, axis=0)
return disp_field_maps
def swap_coords(polygon):
polygon_new = polygon.copy()
polygon_new[..., 0] = polygon[..., 1]
polygon_new[..., 1] = polygon[..., 0]
return polygon_new
def prepare_polygons_for_tfrecord(gt_polygons, disp_polygons_list, boundingbox=None):
assert len(gt_polygons)
# print("Starting to crop polygons")
# start = time.time()
dtype = gt_polygons[0].dtype
cropped_gt_polygons = []
cropped_disp_polygons_list = [[] for i in range(len(disp_polygons_list))]
polygon_length = 0
for polygon_index, gt_polygon in enumerate(gt_polygons):
if boundingbox is not None:
cropped_gt_polygon = crop_polygon_to_patch_if_touch(gt_polygon, boundingbox)
else:
cropped_gt_polygon = gt_polygon
if cropped_gt_polygon is not None:
cropped_gt_polygons.append(cropped_gt_polygon)
if polygon_length < cropped_gt_polygon.shape[0]:
polygon_length = cropped_gt_polygon.shape[0]
# Crop disp polygons
for disp_index, disp_polygons in enumerate(disp_polygons_list):
disp_polygon = disp_polygons[polygon_index]
if boundingbox is not None:
cropped_disp_polygon = crop_polygon_to_patch(disp_polygon, boundingbox)
else:
cropped_disp_polygon = disp_polygon
cropped_disp_polygons_list[disp_index].append(cropped_disp_polygon)
# end = time.time()
# print("Finished cropping polygons in in {}s".format(end - start))
#
# print("Starting to pad polygons")
# start = time.time()
polygon_count = len(cropped_gt_polygons)
if polygon_count:
# Add +1 to both dimensions for end-of-item NaNs
padded_gt_polygons = np.empty((polygon_count + 1, polygon_length + 1, 2), dtype=dtype)
padded_gt_polygons[:, :, :] = np.nan
padded_disp_polygons_array = np.empty((len(disp_polygons_list), polygon_count + 1, polygon_length + 1, 2),
dtype=dtype)
padded_disp_polygons_array[:, :, :] = np.nan
for i, polygon in enumerate(cropped_gt_polygons):
padded_gt_polygons[i, 0:polygon.shape[0], :] = polygon
for j, polygons in enumerate(cropped_disp_polygons_list):
for i, polygon in enumerate(polygons):
padded_disp_polygons_array[j, i, 0:polygon.shape[0], :] = polygon
else:
padded_gt_polygons = padded_disp_polygons_array = None
# end = time.time()
# print("Finished padding polygons in in {}s".format(end - start))
return padded_gt_polygons, padded_disp_polygons_array
def prepare_stages_polygons_for_tfrecord(gt_polygons, disp_polygons_list_list, boundingbox):
assert len(gt_polygons)
print(gt_polygons)
print(disp_polygons_list_list)
exit()
# print("Starting to crop polygons")
# start = time.time()
dtype = gt_polygons[0].dtype
cropped_gt_polygons = []
cropped_disp_polygons_list_list = [[[] for i in range(len(disp_polygons_list))] for disp_polygons_list in
disp_polygons_list_list]
polygon_length = 0
for polygon_index, gt_polygon in enumerate(gt_polygons):
cropped_gt_polygon = crop_polygon_to_patch_if_touch(gt_polygon, boundingbox)
if cropped_gt_polygon is not None:
cropped_gt_polygons.append(cropped_gt_polygon)
if polygon_length < cropped_gt_polygon.shape[0]:
polygon_length = cropped_gt_polygon.shape[0]
# Crop disp polygons
for stage_index, disp_polygons_list in enumerate(disp_polygons_list_list):
for disp_index, disp_polygons in enumerate(disp_polygons_list):
disp_polygon = disp_polygons[polygon_index]
cropped_disp_polygon = crop_polygon_to_patch(disp_polygon, boundingbox)
cropped_disp_polygons_list_list[stage_index][disp_index].append(cropped_disp_polygon)
# end = time.time()
# print("Finished cropping polygons in in {}s".format(end - start))
#
# print("Starting to pad polygons")
# start = time.time()
polygon_count = len(cropped_gt_polygons)
if polygon_count:
# Add +1 to both dimensions for end-of-item NaNs
padded_gt_polygons = np.empty((polygon_count + 1, polygon_length + 1, 2), dtype=dtype)
padded_gt_polygons[:, :, :] = np.nan
padded_disp_polygons_array = np.empty(
(len(disp_polygons_list_list), len(disp_polygons_list_list[0]), polygon_count + 1, polygon_length + 1, 2),
dtype=dtype)
padded_disp_polygons_array[:, :, :] = np.nan
for i, polygon in enumerate(cropped_gt_polygons):
padded_gt_polygons[i, 0:polygon.shape[0], :] = polygon
for k, cropped_disp_polygons_list in enumerate(cropped_disp_polygons_list_list):
for j, polygons in enumerate(cropped_disp_polygons_list):
for i, polygon in enumerate(polygons):
padded_disp_polygons_array[k, j, i, 0:polygon.shape[0], :] = polygon
else:
padded_gt_polygons = padded_disp_polygons_array = None
# end = time.time()
# print("Finished padding polygons in in {}s".format(end - start))
return padded_gt_polygons, padded_disp_polygons_array
def rescale_polygon(polygons, scaling_factor):
"""
:param polygons:
:return: scaling_factor
"""
if len(polygons):
rescaled_polygons = [polygon * scaling_factor for polygon in polygons]
return rescaled_polygons
else:
return polygons
def get_edge_center(edge):
return np.mean(edge, axis=0)
def get_edge_length(edge):
return np.sqrt(np.sum(np.square(edge[0] - edge[1])))
def get_edges_angle(edge1, edge2):
x1 = edge1[1, 0] - edge1[0, 0]
y1 = edge1[1, 1] - edge1[0, 1]
x2 = edge2[1, 0] - edge2[0, 0]
y2 = edge2[1, 1] - edge2[0, 1]
angle1 = compute_vector_angle(x1, y1)
angle2 = compute_vector_angle(x2, y2)
edges_angle = math.fabs(angle1 - angle2) % (2 * math.pi)
if math.pi < edges_angle:
edges_angle = 2 * math.pi - edges_angle
return edges_angle
def compute_angle_two_points(point_source, point_target):
vector = point_target - point_source
angle = compute_vector_angle(vector[0], vector[1])
return angle
def compute_angle_three_points(point_source, point_target1, point_target2):
squared_dist_source_target1 = math.pow((point_source[0] - point_target1[0]), 2) + math.pow(
(point_source[1] - point_target1[1]), 2)
squared_dist_source_target2 = math.pow((point_source[0] - point_target2[0]), 2) + math.pow(
(point_source[1] - point_target2[1]), 2)
squared_dist_target1_target2 = math.pow((point_target1[0] - point_target2[0]), 2) + math.pow(
(point_target1[1] - point_target2[1]), 2)
dist_source_target1 = math.sqrt(squared_dist_source_target1)
dist_source_target2 = math.sqrt(squared_dist_source_target2)
try:
cos = (squared_dist_source_target1 + squared_dist_source_target2 - squared_dist_target1_target2) / (
2 * dist_source_target1 * dist_source_target2)
except ZeroDivisionError:
return float('inf')
cos = max(min(cos, 1),
-1) # Avoid some math domain error due to cos being slightly bigger than 1 (from floating point operations)
angle = math.acos(cos)
return angle
def are_edges_overlapping(edge1, edge2, threshold):
"""
Checks if at least 2 different vertices of either edge lies on the other edge: it characterizes an overlap
:param edge1:
:param edge2:
:param threshold:
:return:
"""
count_list = [
is_vertex_on_edge(edge1[0], edge2, threshold),
is_vertex_on_edge(edge1[1], edge2, threshold),
is_vertex_on_edge(edge2[0], edge1, threshold),
is_vertex_on_edge(edge2[1], edge1, threshold),
]
# Count number of identical vertices
identical_vertex_list = [
np.array_equal(edge1[0], edge2[0]),
np.array_equal(edge1[0], edge2[1]),
np.array_equal(edge1[1], edge2[0]),
np.array_equal(edge1[1], edge2[1]),
]
adjusted_count = np.sum(count_list) - np.sum(identical_vertex_list)
return 2 <= adjusted_count
# def are_edges_collinear(edge1, edge2, angle_threshold):
# edges_angle = get_edges_angle(edge1, edge2)
# return edges_angle < angle_threshold
def get_line_intersect(a1, a2, b1, b2):
"""
Returns the point of intersection of the lines passing through a2,a1 and b2,b1.
a1: [x, y] a point on the first line
a2: [x, y] another point on the first line
b1: [x, y] a point on the second line
b2: [x, y] another point on the second line
"""
s = np.vstack([a1, a2, b1, b2]) # s for stacked
h = np.hstack((s, np.ones((4, 1)))) # h for homogeneous
l1 = np.cross(h[0], h[1]) # get first line
l2 = np.cross(h[2], h[3]) # get second line
x, y, z = np.cross(l1, l2) # point of intersection
if z == 0: # lines are parallel
return float('inf'), float('inf')
return x / z, y / z
def are_edges_intersecting(edge1, edge2, epsilon=1e-6):
"""
edge1 and edge2 should not have a common vertex between them
:param edge1:
:param edge2:
:return:
"""
intersect = get_line_intersect(edge1[0], edge1[1], edge2[0], edge2[1])
# print("---")
# print(edge1)
# print(edge2)
# print(intersect)
if intersect[0] == float('inf') or intersect[1] == float('inf'):
# Lines don't intersect
return False
else:
# Lines intersect
# Check if intersect point belongs to both edges
angle1 = compute_angle_three_points(intersect, edge1[0], edge1[1])
angle2 = compute_angle_three_points(intersect, edge2[0], edge2[1])
intersect_belongs_to_edges = (math.pi - epsilon) < angle1 and (math.pi - epsilon) < angle2
return intersect_belongs_to_edges
def shorten_edge(edge, length_to_cut1, length_to_cut2, min_length):
center = get_edge_center(edge)
total_length = get_edge_length(edge)
new_length = total_length - length_to_cut1 - length_to_cut2
if min_length <= new_length:
scale = new_length / total_length
new_edge = (edge.copy() - center) * scale + center
return new_edge
else:
return None
def is_edge_in_triangle(edge, triangle):
return edge[0] in triangle and edge[1] in triangle
def get_connectivity_of_edge(edge, triangles):
connectivity = 0
for triangle in triangles:
connectivity += is_edge_in_triangle(edge, triangle)
return connectivity
def get_connectivity_of_edges(edges, triangles):
connectivity_of_edges = []
for edge in edges:
connectivity_of_edge = get_connectivity_of_edge(edge, triangles)
connectivity_of_edges.append(connectivity_of_edge)
return connectivity_of_edges
def polygon_to_closest_int(polygons):
int_polygons = []
for polygon in polygons:
int_polygon = np.round(polygon)
int_polygons.append(int_polygon)
return int_polygons
def is_vertex_on_edge(vertex, edge, threshold):
"""
:param vertex:
:param edge:
:param threshold:
:return:
"""
# Compare distances sum to edge length
edge_length = get_edge_length(edge)
dist1 = get_edge_length([vertex, edge[0]])
dist2 = get_edge_length([vertex, edge[1]])
vertex_on_edge = (dist1 + dist2) < (edge_length + threshold)
return vertex_on_edge
def get_face_edges(face_vertices):
edges = []
prev_vertex = face_vertices[0]
for vertex in face_vertices[1:]:
edge = (prev_vertex, vertex)
edges.append(edge)
# For next iteration:
prev_vertex = vertex
return edges
def find_edge_in_face(edge, face_vertices):
# Copy inputs list so that we don't modify it
face_vertices = face_vertices[:]
face_vertices.append(face_vertices[0]) # Close face (does not matter if it is already closed)
edges = get_face_edges(face_vertices)
index = edges.index(edge)
return index
def clean_degenerate_face_edges(face_vertices):
def recursive_clean_degenerate_face_edges(open_face_vertices):
face_vertex_count = len(open_face_vertices)
cleaned_open_face_vertices = []
skip = False
for index in range(face_vertex_count):
if skip:
skip = False
else:
prev_vertex = open_face_vertices[(index - 1) % face_vertex_count]
vertex = open_face_vertices[index]
next_vertex = open_face_vertices[(index + 1) % face_vertex_count]
if prev_vertex != next_vertex:
cleaned_open_face_vertices.append(vertex)
else:
skip = True
if len(cleaned_open_face_vertices) < face_vertex_count:
return recursive_clean_degenerate_face_edges(cleaned_open_face_vertices)
else:
return cleaned_open_face_vertices
open_face_vertices = face_vertices[:-1]
cleaned_face_vertices = recursive_clean_degenerate_face_edges(open_face_vertices)
# Close cleaned_face_vertices
cleaned_face_vertices.append(cleaned_face_vertices[0])
return cleaned_face_vertices
def merge_vertices(main_face_vertices, extra_face_vertices, common_edge):
sorted_common_edge = tuple(sorted(common_edge))
open_face_vertices_pair = (main_face_vertices[:-1], extra_face_vertices[:-1])
face_index = 0 # 0: current_face == main_face, 1: current_face == extra_face
vertex_index = 0
start_vertex = vertex = open_face_vertices_pair[face_index][vertex_index]
merged_face_vertices = [start_vertex]
faces_merged = False
while not faces_merged:
# Get next vertex
next_vertex_index = (vertex_index + 1) % len(open_face_vertices_pair[face_index])
next_vertex = open_face_vertices_pair[face_index][next_vertex_index]
edge = (vertex, next_vertex)
sorted_edge = tuple(sorted(edge))
if sorted_edge == sorted_common_edge:
# Switch current face
face_index = 1 - face_index
# Find vertex_index in new current face
reverse_edge = (edge[1], edge[0]) # Because we are now on the other face
edge_index = find_edge_in_face(reverse_edge, open_face_vertices_pair[face_index])
vertex_index = edge_index + 1 # Index of the second vertex of edge
# vertex_index = open_face_vertices_pair[face_index].index(vertex)
vertex_index = (vertex_index + 1) % len(open_face_vertices_pair[face_index])
vertex = open_face_vertices_pair[face_index][vertex_index]
merged_face_vertices.append(vertex)
faces_merged = vertex == start_vertex # This also makes the merged_face closed
# Remove degenerate face edges (edges where the face if on both sides of it)
cleaned_merged_face_vertices = clean_degenerate_face_edges(merged_face_vertices)
return cleaned_merged_face_vertices
def polygon_close(polygon):
return np.concatenate((polygon, polygon[0:1, :]), axis=0)
def polygons_close(polygons):
return [polygon_close(polygon) for polygon in polygons]
# def init_cross_field(polygons, shape):
# """
# Cross field: {v_1, v_2, -v_1, -v_2} encoded as {v_1, v_2}.
# This is not invariant to symmetries.
#
# :param polygons:
# :param shape:
# :return: cross_field_array (shape[0], shape[1], 2), dtype=np.int8
# """
# def draw_edge(edge, v1):
# rr, cc = skimage.draw.line(edge[0][0], edge[0][1], edge[1][0], edge[1][1])
# mask = (0 <= rr) & (rr < shape[0]) & (0 <= cc) & (cc < shape[1])
# cross_field_array[rr[mask], cc[mask], 0] = v1.real
# cross_field_array[rr[mask], cc[mask], 1] = v1.imag
#
# polygons = polygons_remove_holes(polygons)
# polygons = polygons_close(polygons)
#
# cross_field_array = np.zeros(shape + (4,), dtype=np.float)
#
# for polygon in polygons:
# # --- edges:
# edge_vect_array = np.diff(polygon, axis=0)
# norm = np.linalg.norm(edge_vect_array, axis=1, keepdims=True)
# # if not np.all(0 < norm):
# # print("WARNING: one of the norms is zero, which cannot be used to divide")
# # print("polygon that raised this warning:")
# # print(polygon)
# # exit()
# edge_dir_array = edge_vect_array / norm
# edge_v1_array = edge_dir_array.view(np.complex)[..., 0]
# # edge_v2_array is zero
#
# # --- vertices:
# vertex_v1_array = edge_v1_array
# vertex_v2_array = - np.roll(edge_v1_array, 1, axis=0)
#
# # --- Draw values
# polygon = polygon.astype(np.int)
#
# for i in range(polygon.shape[0] - 1):
# edge = (polygon[i], polygon[i+1])
# v1 = edge_v1_array[i]
# draw_edge(edge, v1)
#
# vertex_array = polygon[:-1]
# mask = (0 <= vertex_array[:, 0]) & (vertex_array[:, 0] < shape[0])\
# & (0 <= vertex_array[:, 1]) & (vertex_array[:, 1] < shape[1])
# cross_field_array[vertex_array[mask, 0], vertex_array[mask, 1], 0] = vertex_v1_array[mask].real
# cross_field_array[vertex_array[mask, 0], vertex_array[mask, 1], 1] = vertex_v1_array[mask].imag
# cross_field_array[vertex_array[mask, 0], vertex_array[mask, 1], 2] = vertex_v2_array[mask].real
# cross_field_array[vertex_array[mask, 0], vertex_array[mask, 1], 3] = vertex_v2_array[mask].imag
#
# # --- Encode cross-field with integer complex to save memory because abs(cross_field_array) <= 1 anyway.
# cross_field_array = (127*cross_field_array).astype(np.int8)
#
# return cross_field_array
# def init_angle_field(polygons, shape):
# """
# Angle field {\theta_1} the tangent vector's angle for every pixel, specified on the polygon edges.
# Angle between 0 and pi.
# Also indices of those angle values.
# This is not invariant to symmetries.
#
# :param polygons:
# :param shape:
# :return: (angles: np.array((num_edge_pixels, ), dtype=np.uint8),
# indices: np.array((num_edge_pixels, 2), dtype=np.int))
# """
# def draw_edge(edge, angle):
# rr, cc = skimage.draw.line(edge[0][0], edge[0][1], edge[1][0], edge[1][1])
# edge_mask = (0 <= rr) & (rr < shape[0]) & (0 <= cc) & (cc < shape[1])
# angle_field_array[rr[edge_mask], cc[edge_mask]] = angle
# mask[rr[edge_mask], cc[edge_mask]] = True
#
# polygons = polygons_remove_holes(polygons)
# polygons = polygons_close(polygons)
#
# angle_field_array = np.zeros(shape, dtype=np.float)
# mask = np.zeros(shape, dtype=np.bool)
#
# for polygon in polygons:
# # --- edges:
# edge_vect_array = np.diff(polygon, axis=0)
# edge_angle_array = np.angle(edge_vect_array[:, 0] + 1j * edge_vect_array[:, 1])
# neg_indices = np.where(edge_angle_array < 0)
# edge_angle_array[neg_indices] += np.pi
#
# # --- Draw values
# polygon = polygon.astype(np.int)
#
# for i in range(polygon.shape[0] - 1):
# edge = (polygon[i], polygon[i+1])
# angle = edge_angle_array[i]
# draw_edge(edge, angle)
#
# # --- Encode angle-field with positive integers to save memory because angle is between 0 and pi.
# indices = np.stack(np.where(mask), axis=-1)
# angles = angle_field_array[indices[:, 0], indices[:, 1]]
# angles = (255*angles/np.pi).round().astype(np.uint8)
#
# return angles, indices
def init_angle_field(polygons, shape, line_width=1):
"""
Angle field {\theta_1} the tangent vector's angle for every pixel, specified on the polygon edges.
Angle between 0 and pi.
This is not invariant to symmetries.
:param polygons:
:param shape:
:return: (angles: np.array((num_edge_pixels, ), dtype=np.uint8),
mask: np.array((num_edge_pixels, 2), dtype=np.int))
"""
assert type(polygons) == list, "polygons should be a list"
polygons = polygons_remove_holes(polygons)
polygons = polygons_close(polygons)
im = Image.new("L", (shape[1], shape[0]))
im_px_access = im.load()
draw = ImageDraw.Draw(im)
for polygon in polygons:
# --- edges:
edge_vect_array = np.diff(polygon, axis=0)
edge_angle_array = np.angle(edge_vect_array[:, 0] + 1j * edge_vect_array[:, 1])
neg_indices = np.where(edge_angle_array < 0)
edge_angle_array[neg_indices] += np.pi
for i in range(polygon.shape[0] - 1):
edge = (polygon[i], polygon[i + 1])
angle = edge_angle_array[i]
uint8_angle = int((255 * angle / np.pi).round())
line = [(edge[0][1], edge[0][0]), (edge[1][1], edge[1][0])]
draw.line(line, fill=uint8_angle, width=line_width)
_draw_circle(draw, line[0], radius=line_width / 2, fill=uint8_angle)
_draw_circle(draw, line[1], radius=line_width / 2, fill=uint8_angle)
# Convert image to numpy array
array = np.array(im)
return array
def plot_geometries(axis, geometries, linewidths=1, markersize=3):
if len(geometries):
patches = []
for i, geometry in enumerate(geometries):
if geometry.geom_type == "Polygon":
polygon = shapely.geometry.Polygon(geometry)
if not polygon.is_empty:
patch = PolygonPatch(polygon)
patches.append(patch)
axis.plot(*polygon.exterior.xy, marker="o", markersize=markersize)
for interior in polygon.interiors:
axis.plot(*interior.xy, marker="o", markersize=markersize)
elif geometry.geom_type == "LineString" or geometry.geom_type == "LinearRing":
axis.plot(*geometry.xy, marker="o", markersize=markersize)
else:
raise NotImplementedError(f"Geom type {geometry.geom_type} not recognized.")
random.seed(1)
colors = random.choices([
[0, 0, 1, 1],
[0, 1, 0, 1],
[1, 0, 0, 1],
[1, 1, 0, 1],
[1, 0, 1, 1],
[0, 1, 1, 1],
[0.5, 1, 0, 1],
[1, 0.5, 0, 1],
[0.5, 0, 1, 1],
[1, 0, 0.5, 1],
[0, 0.5, 1, 1],
[0, 1, 0.5, 1],
], k=len(patches))
edgecolors = np.array(colors)
facecolors = edgecolors.copy()
p = PatchCollection(patches, facecolors=facecolors, edgecolors=edgecolors, linewidths=linewidths)
axis.add_collection(p)
def sample_geometry(geom, density):
"""
Sample edges of geom with a homogeneous density.
@param geom:
@param density:
@return:
"""
if isinstance(geom, shapely.geometry.GeometryCollection):
# tic = time.time()
sampled_geom = shapely.geometry.GeometryCollection([sample_geometry(g, density) for g in geom])
# toc = time.time()
# print(f"sample_geometry: {toc - tic}s")
elif isinstance(geom, shapely.geometry.Polygon):
sampled_exterior = sample_geometry(geom.exterior, density)
sampled_interiors = [sample_geometry(interior, density) for interior in geom.interiors]
sampled_geom = shapely.geometry.Polygon(sampled_exterior, sampled_interiors)
elif isinstance(geom, shapely.geometry.LineString):
sampled_x = []
sampled_y = []
coords = np.array(geom.coords[:])
lengths = np.linalg.norm(coords[:-1] - coords[1:], axis=1)
for i in range(len(lengths)):
start = geom.coords[i]
end = geom.coords[i + 1]
length = lengths[i]
num = max(1, int(round(length / density))) + 1
x_seq = np.linspace(start[0], end[0], num)
y_seq = np.linspace(start[1], end[1], num)
if 0 < i:
x_seq = x_seq[1:]
y_seq = y_seq[1:]
sampled_x.append(x_seq)
sampled_y.append(y_seq)
sampled_x = np.concatenate(sampled_x)
sampled_y = np.concatenate(sampled_y)
sampled_coords = zip(sampled_x, sampled_y)
sampled_geom = shapely.geometry.LineString(sampled_coords)
else:
raise TypeError(f"geom of type {type(geom)} not supported!")
return sampled_geom
#
# def sample_half_tangent_endpoints(geom, length=0.1):
# """
# Add 2 vertices per edge, very close to the edge's endpoints. They represent both half-tangent endpoints
# @param geom:
# @param length:
# @return:
# """
# if isinstance(geom, shapely.geometry.GeometryCollection):
# sampled_geom = shapely.geometry.GeometryCollection([sample_half_tangent_endpoints(g, length) for g in geom])
# elif isinstance(geom, shapely.geometry.Polygon):
# sampled_exterior = sample_half_tangent_endpoints(geom.exterior, length)
# sampled_interiors = [sample_half_tangent_endpoints(interior, length) for interior in geom.interiors]
# sampled_geom = shapely.geometry.Polygon(sampled_exterior, sampled_interiors)
# elif isinstance(geom, shapely.geometry.LineString):
# coords = np.array(geom.coords[:])
# edge_vecs = coords[1:] - coords[:-1]
# norms = np.linalg.norm(edge_vecs, axis=1)
# edge_dirs = edge_vecs / norms[:, None]
# sampled_coords = [coords[0]] # Init with first vertex
# for edge_i in range(edge_dirs.shape[0]):
# first_half_tangent_endpoint = coords[edge_i] + length * edge_dirs[edge_i]
# sampled_coords.append(first_half_tangent_endpoint)
# second_half_tangent_endpoint = coords[edge_i + 1] - length * edge_dirs[edge_i]
# sampled_coords.append(second_half_tangent_endpoint)
# sampled_coords.append(coords[edge_i + 1]) # Next vertex
# sampled_geom = shapely.geometry.LineString(sampled_coords)
# else:
# raise TypeError(f"geom of type {type(geom)} not supported!")
# return sampled_geom
def point_project_onto_geometry(coord, target):
point = shapely.geometry.Point(coord)
_, projected_point = shapely.ops.nearest_points(point, target)
# dist = point.distance(projected_point)
return projected_point.coords[0]
def project_onto_geometry(geom, target, pool: Pool=None):
"""
Projects all points from line_string onto target.
@param geom:
@param target:
@param pool:
@return:
"""
if isinstance(geom, shapely.geometry.GeometryCollection):
# tic = time.time()
if pool is None:
projected_geom = [project_onto_geometry(g, target, pool=pool) for g in geom]
else:
partial_project_onto_geometry = partial(project_onto_geometry, target=target)
projected_geom = pool.map(partial_project_onto_geometry, geom)
projected_geom = shapely.geometry.GeometryCollection(projected_geom)
# toc = time.time()
# print(f"project_onto_geometry: {toc - tic}s")
elif isinstance(geom, shapely.geometry.Polygon):
projected_exterior = project_onto_geometry(geom.exterior, target)
projected_interiors = [project_onto_geometry(interior, target) for interior in geom.interiors]
try:
projected_geom = shapely.geometry.Polygon(projected_exterior, projected_interiors)
except shapely.errors.TopologicalError as e:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(8, 4), sharex=True, sharey=True)
ax = axes.ravel()
plot_geometries(ax[0], [geom])
plot_geometries(ax[1], target)
plot_geometries(ax[2], [projected_exterior, *projected_interiors])
fig.tight_layout()
plt.show()
raise e
elif isinstance(geom, shapely.geometry.LineString):
projected_coords = [point_project_onto_geometry(coord, target) for coord in geom.coords]
projected_geom = shapely.geometry.LineString(projected_coords)
else:
raise TypeError(f"geom of type {type(geom)} not supported!")
return projected_geom
#
# def compute_edge_measures(geom1, geom2, max_stretch, metric_name="cosine"):
# """
#
# @param geom1:
# @param geom2:
# @param max_stretch: Edges of geom2 than are longer than those of geom1 with a factor greater than max_stretch are ignored
# @param metric_name:
# @return:
# """
# assert type(geom1) == type(geom2), f"geom1 and geom2 must be of the same type, not {type(geom1)} and {type(geom2)}"
# if isinstance(geom1, shapely.geometry.GeometryCollection):
# # tic = time.time()
#
# edge_measures_edge_dists_list = [compute_edge_measures(_geom1, _geom2, max_stretch, metric_name=metric_name) for _geom1, _geom2 in zip(geom1, geom2)]
# if len(edge_measures_edge_dists_list):
# edge_measures_list, edge_dists_list = zip(*edge_measures_edge_dists_list)
# edge_measures = np.concatenate(edge_measures_list)
# edge_dists = np.concatenate(edge_dists_list)
# else:
# edge_measures = np.array([])
# edge_dists = np.array([])
#
# # toc = time.time()
# # print(f"compute_edge_distance: {toc - tic}s")
# # elif isinstance(geom1, shapely.geometry.Polygon):
# # distances_exterior = compute_edge_distance(geom1.exterior, geom2.exterior, tolerance, max_stretch, dist=dist)
# # distances_interiors = [compute_edge_distance(interior1, interior2, tolerance, max_stretch, dist=dist) for interior1, interior2 in zip(geom1.interiors, geom2.interiors)]
# # distances = [distances_exterior, *distances_interiors]
# # distances = np.concatenate(distances)
# elif isinstance(geom1, shapely.geometry.LineString):
# assert len(geom1.coords) == len(geom2.coords), "geom1 and geom2 must have the same length"
# points1 = np.array(geom1.coords)
# points2 = np.array(geom2.coords)
# # Mark points that are farther away than tolerance between points1 and points2 to remove then from further computation
# point_dists = np.linalg.norm(points1 - points2, axis=1)
# if metric_name == "cosine":
# edges1 = points1[1:] - points1[:-1]
# edges2 = points2[1:] - points2[:-1]
# edge_dists = (point_dists[1:] + point_dists[:-1]) / 2
# # Remove edges with a norm of zero
# norm1 = np.linalg.norm(edges1, axis=1)
# norm2 = np.linalg.norm(edges2, axis=1)
# norm_valid_mask = 0 < norm1 * norm2
# edges1 = edges1[norm_valid_mask]
# edges2 = edges2[norm_valid_mask]
# norm1 = norm1[norm_valid_mask]
# norm2 = norm2[norm_valid_mask]
# edge_dists = edge_dists[norm_valid_mask]
# # Remove edges that have been stretched more than max_stretch
# stretch = norm2 / norm1
# stretch_valid_mask = np.logical_and(1 / max_stretch < stretch, stretch < max_stretch)
# edges1 = edges1[stretch_valid_mask]
# edges2 = edges2[stretch_valid_mask]
# norm1 = norm1[stretch_valid_mask]
# norm2 = norm2[stretch_valid_mask]
# edge_dists = edge_dists[stretch_valid_mask]
# # Compute
# edge_measures = np.sum(np.multiply(edges1, edges2), axis=1) / (norm1 * norm2)
# else:
# raise NotImplemented(f"Metric '{metric_name}' is not implemented")
# else:
# raise TypeError(f"geom of type {type(geom1)} not supported!")
# return edge_measures, edge_dists
def compute_contour_measure(pred_polygon, gt_contours, sampling_spacing, max_stretch, metric_name="cosine"):
pred_contours = shapely.geometry.GeometryCollection([pred_polygon.exterior, *pred_polygon.interiors])
sampled_pred_contours = sample_geometry(pred_contours, sampling_spacing)
# Project sampled contour points to ground truth contours
projected_pred_contours = project_onto_geometry(sampled_pred_contours, gt_contours)
contour_measures = []
for contour, proj_contour in zip(sampled_pred_contours, projected_pred_contours):
coords = np.array(contour.coords[:])
proj_coords = np.array(proj_contour.coords[:])
edges = coords[1:] - coords[:-1]
proj_edges = proj_coords[1:] - proj_coords[:-1]
# Remove edges with a norm of zero
edge_norms = np.linalg.norm(edges, axis=1)
proj_edge_norms = np.linalg.norm(proj_edges, axis=1)
norm_valid_mask = 0 < edge_norms * proj_edge_norms
edges = edges[norm_valid_mask]
proj_edges = proj_edges[norm_valid_mask]
edge_norms = edge_norms[norm_valid_mask]
proj_edge_norms = proj_edge_norms[norm_valid_mask]
# Remove edge that have stretched more than max_stretch (invalid projection)
stretch = edge_norms / proj_edge_norms
stretch_valid_mask = np.logical_and(1 / max_stretch < stretch, stretch < max_stretch)
edges = edges[stretch_valid_mask]
if edges.shape[0] == 0:
# Invalid projection for the whole contour, skip it
continue
proj_edges = proj_edges[stretch_valid_mask]
edge_norms = edge_norms[stretch_valid_mask]
proj_edge_norms = proj_edge_norms[stretch_valid_mask]
scalar_products = np.abs(np.sum(np.multiply(edges, proj_edges), axis=1) / (edge_norms * proj_edge_norms))
try:
contour_measures.append(scalar_products.min())
except ValueError:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(8, 4), sharex=True, sharey=True)
ax = axes.ravel()
plot_geometries(ax[0], [contour])
plot_geometries(ax[1], [proj_contour])
plot_geometries(ax[2], gt_contours)
fig.tight_layout()
plt.show()
if len(contour_measures):
min_scalar_product = min(contour_measures)
measure = np.arccos(min_scalar_product)
return measure
else:
return None
def compute_polygon_contour_measures(pred_polygons: list, gt_polygons: list, sampling_spacing: float, min_precision: float, max_stretch: float, metric_name: str="cosine", progressbar=False):
"""
pred_polygons are sampled with sampling_spacing before projecting those sampled points to gt_polygons.
Then the
@param pred_polygons:
@param gt_polygons:
@param sampling_spacing:
@param min_precision: Polygons in pred_polygons must have a precision with gt_polygons above min_precision to be included in further computations
@param max_stretch: Exclude edges that have been stretched by the projection more than max_stretch from further computation
@param metric_name: Metric type, can be "cosine" or ...
@return:
"""
assert isinstance(pred_polygons, list), "pred_polygons should be a list"
assert isinstance(gt_polygons, list), "gt_polygons should be a list"
if len(pred_polygons) == 0 or len(gt_polygons) == 0:
return np.array([]), [], []
assert isinstance(pred_polygons[0], shapely.geometry.Polygon), \
f"Items of pred_polygons should be of type shapely.geometry.Polygon, not {type(pred_polygons[0])}"
assert isinstance(gt_polygons[0], shapely.geometry.Polygon), \
f"Items of gt_polygons should be of type shapely.geometry.Polygon, not {type(gt_polygons[0])}"
gt_polygons = shapely.geometry.collection.GeometryCollection(gt_polygons)
pred_polygons = shapely.geometry.collection.GeometryCollection(pred_polygons)
# Filter pred_polygons to have at least a precision with gt_polygons of min_precision
filtered_pred_polygons = [pred_polygon for pred_polygon in pred_polygons if min_precision < pred_polygon.intersection(gt_polygons).area / pred_polygon.area]
# Extract contours of gt polygons
gt_contours = shapely.geometry.collection.GeometryCollection([contour for polygon in gt_polygons for contour in [polygon.exterior, *polygon.interiors]])
# Measure metric for each pred polygon
if progressbar:
process_id = int(multiprocess.current_process().name[-1])
iterator = tqdm(filtered_pred_polygons, desc="Contour measure", leave=False, position=process_id)
else:
iterator = filtered_pred_polygons
half_tangent_max_angles = [compute_contour_measure(pred_polygon, gt_contours, sampling_spacing=sampling_spacing, max_stretch=max_stretch, metric_name=metric_name)
for pred_polygon in iterator]
return half_tangent_max_angles
def fix_polygons(polygons, buffer=0.0):
polygons_geom = shapely.ops.unary_union(polygons) # Fix overlapping polygons
polygons_geom = polygons_geom.buffer(buffer) # Fix self-intersecting polygons and other things
fixed_polygons = []
if polygons_geom.geom_type == "MultiPolygon":
for poly in polygons_geom:
fixed_polygons.append(poly)
elif polygons_geom.geom_type == "Polygon":
fixed_polygons.append(polygons_geom)
else:
raise TypeError(f"Geom type {polygons_geom.geom_type} not recognized.")
return fixed_polygons
POINTS = []
#
# def compute_half_tangent_measure(pred_polygon, gt_contours, step=0.1, metric_name="angle"):
# """
# For each vertex in pred_polygon, find the closest gt contour and the closest point on that contour. From that point, compute both half-tangents.
# measure angle difference between half-tangents of pred and corresponding gt points.
# @param pred_polygon:
# @param gt_contours:
# @param metric_name:
# @return:
# """
# assert isinstance(pred_polygon, shapely.geometry.Polygon), "pred_polygon should be a shapely Polygon"
# pred_contours = [pred_polygon.exterior, *pred_polygon.interiors]
# tangent_measures_list = []
# for pred_contour in pred_contours:
# pos_array = np.array(pred_contour.coords[:])
# pred_tangents = pos_array[1:] - pos_array[:-1]
# gt_tangent_1_list = []
# gt_tangent_2_list = []
# for i, pos in enumerate(pos_array[:-1]):
# pred_point = shapely.geometry.Point(pos)
# dist_to_gt = np.inf
# closest_gt_contour = None
# for gt_contour in gt_contours:
# d = pred_point.distance(gt_contour)
# if d < dist_to_gt:
# dist_to_gt = d
# closest_gt_contour = gt_contour
# gt_point_t = closest_gt_contour.project(pred_point) # References the projection of pred_point onto closest_gt_contour with a 1d referencing coordinate t
# # --- Compute tangents of projected point on gt:
# gt_point_tangent_1 = closest_gt_contour.interpolate(gt_point_t - step)
# POINTS.append(gt_point_tangent_1)
# gt_point = closest_gt_contour.interpolate(gt_point_t)
# POINTS.append(gt_point)
# gt_point_tangent_2 = closest_gt_contour.interpolate(gt_point_t + step)
# POINTS.append(gt_point_tangent_2)
# gt_pos_tangent_1 = np.array(gt_point_tangent_1.coords[0])
# gt_pos_tangent_2 = np.array(gt_point_tangent_2.coords[0])
# gt_pos = np.array(gt_point.coords[0])
# gt_tangent_1 = gt_pos_tangent_1 - gt_pos
# gt_tangent_2 = gt_pos_tangent_2 - gt_pos
# gt_tangent_1_list.append(gt_tangent_1)
# gt_tangent_2_list.append(gt_tangent_2)
# gt_tangents_1 = np.stack(gt_tangent_1_list, axis=0)
# gt_tangents_2 = np.stack(gt_tangent_2_list, axis=0)
# # Measure dist between pred_tangents and gt_tangents
# pred_norms = np.linalg.norm(pred_tangents, axis=1)
# tangent_1_measures = np.abs(np.sum(np.multiply(np.roll(pred_tangents, 1, axis=0), gt_tangents_1), axis=1) / (np.roll(pred_norms, 1, axis=0) * step))
# tangent_2_measures = np.abs(np.sum(np.multiply(pred_tangents, gt_tangents_2), axis=1) / (pred_norms * step))
# print(tangent_1_measures)
# print(tangent_2_measures)
# tangent_measures_list.append(tangent_1_measures)
# tangent_measures_list.append(tangent_2_measures)
# tangent_measures = np.concatenate(tangent_measures_list)
# min_scalar_product = np.min(tangent_measures)
# max_angle = np.arccos(min_scalar_product)
# return max_angle
#
# def compute_vertex_measures(pred_polygons: list, gt_polygons: list, min_precision: float, metric_name: str="angle", pool: Pool=None):
# """
# Computes measure for each pred_polygon
# @param pred_polygons:
# @param gt_polygons:
# @param min_precision:
# @param metric_name:
# @param pool:
# @return:
# """
# assert isinstance(pred_polygons, list), "pred_polygons should be a list"
# assert isinstance(gt_polygons, list), "gt_polygons should be a list"
# if len(pred_polygons) == 0 or len(gt_polygons) == 0:
# return np.array([]), [], []
# assert isinstance(pred_polygons[0], shapely.geometry.Polygon), \
# f"Items of pred_polygons should be of type shapely.geometry.Polygon, not {type(pred_polygons[0])}"
# assert isinstance(gt_polygons[0], shapely.geometry.Polygon), \
# f"Items of gt_polygons should be of type shapely.geometry.Polygon, not {type(gt_polygons[0])}"
# gt_polygons = shapely.geometry.collection.GeometryCollection(gt_polygons)
# pred_polygons = shapely.geometry.collection.GeometryCollection(pred_polygons)
# # Filter pred_polygons to have at least a precision with gt_polygons of min_precision
# filtered_pred_polygons = [pred_polygon for pred_polygon in pred_polygons if min_precision < pred_polygon.intersection(gt_polygons).area / pred_polygon.area]
# # Extract contours of gt polygons
# gt_contours = shapely.geometry.collection.GeometryCollection([contour for polygon in gt_polygons for contour in [polygon.exterior, *polygon.interiors]])
# # Measure metric for each pre polygon
# half_tangent_max_angles = [compute_half_tangent_measure(pred_polygon, gt_contours, metric_name=metric_name)
# for pred_polygon in filtered_pred_polygons]
# return half_tangent_max_angles
def main():
import matplotlib.pyplot as plt
gt_polygon_1 = shapely.geometry.Polygon(
[
[0, 0],
[10, 0],
[10, 10],
[0, 10]
],
# [[
# [0.1, 0.1],
# [0.9, 0.1],
# [0.9, 0.9],
# [0.1, 0.9]
# ]]
)
# gt_polygon_2 = shapely.geometry.Polygon([
# [2, 2],
# [5, 0],
# [5, 6],
# [0, 4]
# ])
pred_polygon_1 = shapely.geometry.Polygon(
[
[0.1, 0.1],
[10.1, 0],
[9.9, 9],
[9, 10.1],
[0.1, 10]
],
# [
# [0, 0],
# [10, 0],
# [10, 9],
# [10, 10],
# [9, 10],
# [0, 10]
# ],
)
pred_polygons = [pred_polygon_1]
gt_polygons = [gt_polygon_1]
max_angle_diffs = compute_polygon_contour_measures(pred_polygons, gt_polygons, sampling_spacing=0.1, min_precision=0.5, max_stretch=2)
# half_tangent_max_angles = compute_vertex_measures(pred_polygons, gt_polygons, min_precision=0.5)
# print(cosine_similarities.mean())
print(max_angle_diffs[0] * 180 / np.pi)
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(8, 4), sharex=True, sharey=True)
ax = axes.ravel()
plot_geometries(ax[0], gt_polygons)
plot_geometries(ax[1], pred_polygons)
# plot_geometries(ax[2], projected_pred_contours)
for point in POINTS:
ax[2].plot(*point.xy, marker="o", markersize=1)
fig.tight_layout()
plt.show()
if __name__ == "__main__":
main()
|