File size: 6,608 Bytes
abd2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import random
import torch
import torch.utils.data
import torch.distributed

from . import data_transforms
from .model import FrameFieldModel
from .trainer import Trainer
from . import losses
from . import local_utils

from lydorn_utils import print_utils

try:
    import apex
    from apex import amp

    APEX_AVAILABLE = True
except ModuleNotFoundError:
    APEX_AVAILABLE = False


def count_trainable_params(model):
    count = 0
    for param in model.parameters():
        if param.requires_grad:
            count += param.numel()
    return count


def train(gpu, config, shared_dict, barrier, train_ds, val_ds, backbone):
    # --- Set seeds --- #
    torch.manual_seed(2)  # For DistributedDataParallel: make sure all models are initialized identically
    # torch.backends.cudnn.deterministic = True
    # torch.backends.cudnn.benchmark = False
    # os.environ['CUDA_LAUNCH_BLOCKING'] = 1
    torch.autograd.set_detect_anomaly(True)

    # --- Setup DistributedDataParallel --- #
    rank = config["nr"] * config["gpus"] + gpu
    torch.distributed.init_process_group(
        backend='nccl',
        init_method='env://',
        world_size=config["world_size"],
        rank=rank
    )

    if gpu == 0:
        print("# --- Start training --- #")

    # --- Setup run --- #
    # Setup run on process 0:
    if gpu == 0:
        shared_dict["run_dirpath"], shared_dict["init_checkpoints_dirpath"] = local_utils.setup_run(config)
    barrier.wait()  # Wait on all processes so that shared_dict is synchronized.

    # Choose device
    torch.cuda.set_device(gpu)

    # --- Online transform performed on the device (GPU):
    train_online_cuda_transform = data_transforms.get_online_cuda_transform(config,
                                                                            augmentations=config["data_aug_params"][
                                                                                "enable"])
    if val_ds is not None:
        eval_online_cuda_transform = data_transforms.get_online_cuda_transform(config, augmentations=False)
    else:
        eval_online_cuda_transform = None

    if "samples" in config:
        rng_samples = random.Random(0)
        train_ds = torch.utils.data.Subset(train_ds, rng_samples.sample(range(len(train_ds)), config["samples"]))
        if val_ds is not None:
            val_ds = torch.utils.data.Subset(val_ds, rng_samples.sample(range(len(val_ds)), config["samples"]))
        # test_ds = torch.utils.data.Subset(test_ds, list(range(config["samples"])))

    if gpu == 0:
        print(f"Train dataset has {len(train_ds)} samples.")

    train_sampler = torch.utils.data.distributed.DistributedSampler(train_ds,
                                                                    num_replicas=config["world_size"], rank=rank)
    val_sampler = None
    if val_ds is not None:
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_ds,
                                                                      num_replicas=config["world_size"], rank=rank)
    if "samples" in config:
        eval_batch_size = min(2 * config["optim_params"]["batch_size"], config["samples"])
    else:
        eval_batch_size = 2 * config["optim_params"]["batch_size"]

    init_dl = torch.utils.data.DataLoader(train_ds, batch_size=eval_batch_size, pin_memory=True,
                                          sampler=train_sampler, num_workers=config["num_workers"], drop_last=True)
    train_dl = torch.utils.data.DataLoader(train_ds, batch_size=config["optim_params"]["batch_size"], shuffle=False,
                                           pin_memory=True, sampler=train_sampler, num_workers=config["num_workers"],
                                           drop_last=True)
    if val_ds is not None:
        val_dl = torch.utils.data.DataLoader(val_ds, batch_size=eval_batch_size, pin_memory=True,
                                             sampler=val_sampler, num_workers=config["num_workers"], drop_last=True)
    else:
        val_dl = None

    model = FrameFieldModel(config, backbone=backbone, train_transform=train_online_cuda_transform,
                            eval_transform=eval_online_cuda_transform)
    model.cuda(gpu)
    if gpu == 0:
        print("Model has {} trainable params".format(count_trainable_params(model)))

    loss_func = losses.build_combined_loss(config).cuda(gpu)
    # Compute learning rate
    lr = min(config["optim_params"]["base_lr"] * config["optim_params"]["batch_size"] * config["world_size"], config["optim_params"]["max_lr"])

    if config["optim_params"]["optimizer"] == "Adam":
        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=lr,
                                     # weight_decay=config["optim_params"]["weight_decay"],
                                     eps=1e-8  # Increase if instability is detected
                                     )
    elif config["optim_params"]["optimizer"] == "RMSProp":
        optimizer = torch.optim.RMSprop(model.parameters(), lr=lr)
    else:
        raise NotImplementedError(f"Optimizer {config['optim_params']['optimizer']} not recognized")
    # optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)

    if config["use_amp"] and APEX_AVAILABLE:
        amp.register_float_function(torch, 'sigmoid')
        model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
    elif config["use_amp"] and not APEX_AVAILABLE and gpu == 0:
        print_utils.print_warning("WARNING: Cannot use amp because the apex library is not available!")

    # Wrap the model for distributed training
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu], find_unused_parameters=True)

    # def lr_warmup_func(epoch):
    #     if epoch < config["warmup_epochs"]:
    #         coef = 1 + (config["warmup_factor"] - 1) * (config["warmup_epochs"] - epoch) / config["warmup_epochs"]
    #     else:
    #         coef = 1
    #     return coef
    # lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_warmup_func)
    # lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
    lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, config["optim_params"]["gamma"])

    trainer = Trainer(rank, gpu, config, model, optimizer, loss_func,
                      run_dirpath=shared_dict["run_dirpath"],
                      init_checkpoints_dirpath=shared_dict["init_checkpoints_dirpath"],
                      lr_scheduler=lr_scheduler)
    trainer.fit(train_dl, val_dl=val_dl, init_dl=init_dl)