File size: 24,424 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
import argparse
import fnmatch
import time
import numpy as np
import skimage
import skimage.measure
import skimage.io
from tqdm import tqdm
import shapely.geometry
import shapely.ops
import shapely.prepared
import cv2
from functools import partial
import torch
from frame_field_learning import polygonize_utils
from frame_field_learning import frame_field_utils
from torch_lydorn.torch.nn.functionnal import bilinear_interpolate
from torch_lydorn.torchvision.transforms import polygons_to_tensorpoly, tensorpoly_pad
from lydorn_utils import math_utils
from lydorn_utils import python_utils
from lydorn_utils import print_utils
DEBUG = False
def debug_print(s: str):
if DEBUG:
print_utils.print_debug(s)
def get_args():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'--raw_pred',
nargs='*',
type=str,
help='Filepath to the raw pred file(s)')
argparser.add_argument(
'--im_filepath',
type=str,
help='Filepath to input image. Will retrieve seg and crossfield in the same directory')
argparser.add_argument(
'--dirpath',
type=str,
help='Path to directory containing seg and crossfield files. Will perform polygonization on all.')
argparser.add_argument(
'--bbox',
nargs='*',
type=int,
help='Selects area in bbox for computation: [min_row, min_col, max_row, max_col]')
argparser.add_argument(
'--steps',
type=int,
help='Optim steps')
args = argparser.parse_args()
return args
class PolygonAlignLoss:
def __init__(self, indicator, level, c0c2, data_coef, length_coef, crossfield_coef, dist=None, dist_coef=None):
self.indicator = indicator
self.level = level
self.c0c2 = c0c2
self.dist = dist
self.data_coef = data_coef
self.length_coef = length_coef
self.crossfield_coef = crossfield_coef
self.dist_coef = dist_coef
def __call__(self, tensorpoly):
"""
:param tensorpoly: closed polygon
:return:
"""
polygon = tensorpoly.pos[tensorpoly.to_padded_index]
polygon_batch = tensorpoly.batch[tensorpoly.to_padded_index]
# Compute edges:
edges = polygon[1:] - polygon[:-1]
# Compute edge mask to remove edges that connect two different polygons from loss
# Also note the last poly_slice is not used, because the last edge of the last polygon is not connected to a non-existant next polygon:
edge_mask = torch.ones((edges.shape[0]), device=edges.device)
edge_mask[tensorpoly.to_unpadded_poly_slice[:-1, 1]] = 0
midpoints = (polygon[1:] + polygon[:-1]) / 2
midpoints_batch = polygon_batch[1:]
midpoints_int = midpoints.round().long()
midpoints_int[:, 0] = torch.clamp(midpoints_int[:, 0], 0, self.c0c2.shape[2] - 1)
midpoints_int[:, 1] = torch.clamp(midpoints_int[:, 1], 0, self.c0c2.shape[3] - 1)
midpoints_c0 = self.c0c2[midpoints_batch, :2, midpoints_int[:, 0], midpoints_int[:, 1]]
midpoints_c2 = self.c0c2[midpoints_batch, 2:, midpoints_int[:, 0], midpoints_int[:, 1]]
norms = torch.norm(edges, dim=-1)
# Add edges with small norms to the edge mask so that losses are not computed on them
edge_mask[norms < 0.1] = 0 # Less than 10% of a pixel
z = edges / (norms[:, None] + 1e-3)
# Align to crossfield
align_loss = frame_field_utils.framefield_align_error(midpoints_c0, midpoints_c2, z, complex_dim=1)
align_loss = align_loss * edge_mask
total_align_loss = torch.sum(align_loss)
# Align to level set of indicator:
pos_indicator_value = bilinear_interpolate(self.indicator[:, None, ...], tensorpoly.pos, batch=tensorpoly.batch)
# TODO: Try to use grid_sample with batch for speed: put batch dim to height dim and make a single big image.
# TODO: Convert pos accordingly and take care of borders
# height = self.indicator.shape[1]
# width = self.indicator.shape[2]
# normed_xy = tensorpoly.pos.roll(shifts=1, dims=-1)
# normed_xy[: 0] /= (width-1)
# normed_xy[: 1] /= (height-1)
# centered_xy = 2*normed_xy - 1
# pos_value = torch.nn.functional.grid_sample(self.indicator[None, None, ...], centered_batch_xy[None, None, ...], align_corners=True).squeeze()
level_loss = torch.sum(torch.pow(pos_indicator_value - self.level, 2))
# Align to minimum distance from the boundary
dist_loss = None
if self.dist is not None:
pos_dist_value = bilinear_interpolate(self.dist[:, None, ...], tensorpoly.pos, batch=tensorpoly.batch)
dist_loss = torch.sum(torch.pow(pos_dist_value, 2))
length_penalty = torch.sum(
torch.pow(norms * edge_mask, 2)) # Sum of squared norm to penalise uneven edge lengths
# length_penalty = torch.sum(norms)
losses_dict = {
"align": total_align_loss.item(),
"level": level_loss.item(),
"length": length_penalty.item(),
}
coef_sum = self.data_coef + self.length_coef + self.crossfield_coef
total_loss = (self.data_coef * level_loss + self.length_coef * length_penalty + self.crossfield_coef * total_align_loss)
if dist_loss is not None:
losses_dict["dist"] = dist_loss.item()
total_loss += self.dist_coef * dist_loss
coef_sum += self.dist_coef
total_loss /= coef_sum
return total_loss, losses_dict
class TensorPolyOptimizer:
def __init__(self, config, tensorpoly, indicator, c0c2, data_coef, length_coef, crossfield_coef, dist=None, dist_coef=None):
assert len(indicator.shape) == 3, "indicator: (N, H, W)"
assert len(c0c2.shape) == 4 and c0c2.shape[1] == 4, "c0c2: (N, 4, H, W)"
if dist is not None:
assert len(dist.shape) == 3, "dist: (N, H, W)"
self.config = config
self.tensorpoly = tensorpoly
# Require grads for graph.pos: this is what is optimized
self.tensorpoly.pos.requires_grad = True
# Save pos of endpoints so that they can be reset after each step (endpoints are not meant to be moved)
self.endpoint_pos = self.tensorpoly.pos[self.tensorpoly.is_endpoint].clone()
self.criterion = PolygonAlignLoss(indicator, config["data_level"], c0c2, data_coef, length_coef,
crossfield_coef, dist=dist, dist_coef=dist_coef)
self.optimizer = torch.optim.SGD([tensorpoly.pos], lr=config["poly_lr"])
def lr_warmup_func(iter):
if iter < config["warmup_iters"]:
coef = 1 + (config["warmup_factor"] - 1) * (config["warmup_iters"] - iter) / config["warmup_iters"]
else:
coef = 1
return coef
self.lr_scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lr_warmup_func)
def step(self, iter_num):
self.optimizer.zero_grad()
loss, losses_dict = self.criterion(self.tensorpoly)
# print("loss:", loss.item())
loss.backward()
# print(polygon_tensor.grad[0])
self.optimizer.step()
self.lr_scheduler.step(iter_num)
# Move endpoints back:
with torch.no_grad():
self.tensorpoly.pos[self.tensorpoly.is_endpoint] = self.endpoint_pos
return loss.item(), losses_dict
def optimize(self):
# if DEBUG:
# optim_iter = tqdm(range(self.config["steps"]), desc="Gradient descent", leave=True)
# else:
# optim_iter = range(self.config["steps"])
# # print("---------------------------------------------")
# for iter_num in optim_iter:
# loss, losses_dict = self.step(iter_num)
# if DEBUG:
# optim_iter.set_postfix(loss=loss, **losses_dict)
optim_iter = range(self.config["steps"])
for iter_num in optim_iter:
loss, losses_dict = self.step(iter_num)
return self.tensorpoly
def contours_batch_to_tensorpoly(contours_batch):
# Convert a batch of contours to a TensorPoly representation with PyTorch tensors
tensorpoly = polygons_to_tensorpoly(contours_batch)
# Pad contours so that we can treat them as closed:
tensorpoly = tensorpoly_pad(tensorpoly, padding=(0, 1))
return tensorpoly
def tensorpoly_to_contours_batch(tensorpoly):
# Convert back to contours
contours_batch = [[] for _ in range(tensorpoly.batch_size)]
for poly_i in range(tensorpoly.poly_slice.shape[0]):
s = tensorpoly.poly_slice[poly_i, :]
contour = np.array(tensorpoly.pos[s[0]:s[1], :].detach().cpu())
is_open = tensorpoly.is_endpoint[s[0]] # Is open = if first vertex is an endpoint
if not is_open:
# Close contour
contour = np.concatenate([contour, contour[:1, :]], axis=0)
batch_i = tensorpoly.batch[s[0]] # Batch of polygon = batch of first vertex
contours_batch[batch_i].append(contour)
return contours_batch
def print_contours_stats(contours):
min_length = contours[0].shape[0]
max_length = contours[0].shape[0]
nb_vertices = 0
for contour in contours:
nb_vertices += contour.shape[0]
if contour.shape[0] < min_length:
min_length = contour.shape[0]
if max_length < contour.shape[0]:
max_length = contour.shape[0]
print("Nb polygon:", len(contours), "Nb vertices:", nb_vertices, "Min lengh:", min_length, "Max lengh:", max_length)
def shapely_postprocess(contours, u, v, np_indicator, tolerance, config):
if type(tolerance) == list:
# Use several tolerance values for simplification. return a dict with all results
out_polygons_dict = {}
out_probs_dict = {}
for tol in tolerance:
out_polygons, out_probs = shapely_postprocess(contours, u, v, np_indicator, tol, config)
out_polygons_dict["tol_{}".format(tol)] = out_polygons
out_probs_dict["tol_{}".format(tol)] = out_probs
return out_polygons_dict, out_probs_dict
else:
height = np_indicator.shape[0]
width = np_indicator.shape[1]
# debug_print("Corner-aware simplification")
# Simplify contours a little to avoid some close-together corner-detection:
# TODO: handle close-together corners better
contours = [skimage.measure.approximate_polygon(contour, tolerance=min(1, tolerance)) for contour in contours]
corner_masks = frame_field_utils.detect_corners(contours, u, v)
contours = polygonize_utils.split_polylines_corner(contours, corner_masks)
# Convert to Shapely:
line_string_list = [shapely.geometry.LineString(out_contour[:, ::-1]) for out_contour in contours]
line_string_list = [line_string.simplify(tolerance, preserve_topology=True) for line_string in line_string_list]
# Add image boundary line_strings for border polygons
line_string_list.append(
shapely.geometry.LinearRing([
(0, 0),
(0, height - 1),
(width - 1, height - 1),
(width - 1, 0),
]))
# debug_print("Merge polylines")
# Merge polylines (for border polygons):
multi_line_string = shapely.ops.unary_union(line_string_list)
# debug_print("polygonize_full")
# Find polygons:
polygons, dangles, cuts, invalids = shapely.ops.polygonize_full(multi_line_string)
polygons = list(polygons)
# debug_print("Remove small polygons")
# Remove small polygons
polygons = [polygon for polygon in polygons if
config["min_area"] < polygon.area]
# debug_print("Remove low prob polygons")
# Remove low prob polygons
filtered_polygons = []
filtered_polygon_probs = []
for polygon in polygons:
prob = polygonize_utils.compute_geom_prob(polygon, np_indicator)
# print("acm:", np_indicator.min(), np_indicator.mean(), np_indicator.max(), prob)
if config["seg_threshold"] < prob:
filtered_polygons.append(polygon)
filtered_polygon_probs.append(prob)
return filtered_polygons, filtered_polygon_probs
def post_process(contours, np_seg, np_crossfield, config):
u, v = math_utils.compute_crossfield_uv(np_crossfield) # u, v are complex arrays
np_indicator = np_seg[:, :, 0]
polygons, probs = shapely_postprocess(contours, u, v, np_indicator, config["tolerance"], config)
return polygons, probs
def polygonize(seg_batch, crossfield_batch, config, pool=None, pre_computed=None):
tic_start = time.time()
assert len(seg_batch.shape) == 4 and seg_batch.shape[
1] <= 3, "seg_batch should be (N, C, H, W) with C <= 3, not {}".format(seg_batch.shape)
assert len(crossfield_batch.shape) == 4 and crossfield_batch.shape[
1] == 4, "crossfield_batch should be (N, 4, H, W)"
assert seg_batch.shape[0] == crossfield_batch.shape[0], "Batch size for seg and crossfield should match"
# Indicator
# tic = time.time()
indicator_batch = seg_batch[:, 0, :, :]
np_indicator_batch = indicator_batch.cpu().numpy()
indicator_batch = indicator_batch.to(config["device"])
# toc = time.time()
# debug_print(f"Indicator to cpu: {toc - tic}s")
# Distance image
dist_batch = None
if "dist_coef" in config:
# tic = time.time()
np_dist_batch = np.empty(np_indicator_batch.shape)
for batch_i in range(np_indicator_batch.shape[0]):
dist_1 = cv2.distanceTransform(np_indicator_batch[batch_i].astype(np.uint8), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_5, dstType=cv2.CV_64F)
dist_2 = cv2.distanceTransform(1 - np_indicator_batch[batch_i].astype(np.uint8), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_5, dstType=cv2.CV_64F)
np_dist_batch[0] = dist_1 + dist_2 - 1
dist_batch = torch.from_numpy(np_dist_batch)
dist_batch = dist_batch.to(config["device"])
# skimage.io.imsave("dist.png", np_dist_batch[0])
# toc = time.time()
# debug_print(f"Distance image: {toc - tic}s")
# debug_print("Init contours")
if pre_computed is None or "init_contours_batch" not in pre_computed:
# tic = time.time()
init_contours_batch = polygonize_utils.compute_init_contours_batch(np_indicator_batch, config["data_level"], pool=pool)
# toc = time.time()
# debug_print(f"Init contours: {toc - tic}s")
else:
init_contours_batch = pre_computed["init_contours_batch"]
# debug_print("Convert contours to tensorpoly")
tensorpoly = contours_batch_to_tensorpoly(init_contours_batch)
# debug_print("Optimize")
# --- Optimize
# tic = time.time()
tensorpoly.to(config["device"])
crossfield_batch = crossfield_batch.to(config["device"])
dist_coef = config["dist_coef"] if "dist_coef" in config else None
tensorpoly_optimizer = TensorPolyOptimizer(config, tensorpoly, indicator_batch, crossfield_batch,
config["data_coef"],
config["length_coef"], config["crossfield_coef"], dist=dist_batch, dist_coef=dist_coef)
tensorpoly = tensorpoly_optimizer.optimize()
out_contours_batch = tensorpoly_to_contours_batch(tensorpoly)
# toc = time.time()
# debug_print(f"Optimize contours: {toc - tic}s")
# --- Post-process:
# debug_print("Post-process")
# tic = time.time()
np_seg_batch = np.transpose(seg_batch.cpu().numpy(), (0, 2, 3, 1))
np_crossfield_batch = np.transpose(crossfield_batch.cpu().numpy(), (0, 2, 3, 1))
if pool is not None:
post_process_partial = partial(post_process, config=config)
polygons_probs_batch = pool.starmap(post_process_partial, zip(out_contours_batch, np_seg_batch, np_crossfield_batch))
polygons_batch, probs_batch = zip(*polygons_probs_batch)
else:
polygons_batch = []
probs_batch = []
for i, out_contours in enumerate(out_contours_batch):
polygons, probs = post_process(out_contours, np_seg_batch[i], np_crossfield_batch[i], config)
polygons_batch.append(polygons)
probs_batch.append(probs)
# toc = time.time()
# debug_print(f"Shapely post-process: {toc - tic}s")
# toc = time.time()
# print(f"Post-process: {toc - tic}s")
# ---
toc_end = time.time()
# debug_print(f"Total: {toc_end - tic_start}s")
return polygons_batch, probs_batch
def main():
from frame_field_learning import framefield, inference
import os
def save_gt_poly(raw_pred_filepath, name):
filapth_format = "/data/mapping_challenge_dataset/processed/val/data_{}.pt"
sample = torch.load(filapth_format.format(name))
polygon_arrays = sample["gt_polygons"]
polygons = [shapely.geometry.Polygon(polygon[:, ::-1]) for polygon in polygon_arrays]
base_filepath = os.path.join(os.path.dirname(raw_pred_filepath), name)
filepath = base_filepath + "." + name + ".pdf"
plot_utils.save_poly_viz(image, polygons, filepath)
config = {
"indicator_add_edge": False,
"steps": 500,
"data_level": 0.5,
"data_coef": 0.1,
"length_coef": 0.4,
"crossfield_coef": 0.5,
"poly_lr": 0.01,
"warmup_iters": 100,
"warmup_factor": 0.1,
"device": "cuda",
"tolerance": 0.5,
"seg_threshold": 0.5,
"min_area": 1,
"inner_polylines_params": {
"enable": False,
"max_traces": 1000,
"seed_threshold": 0.5,
"low_threshold": 0.1,
"min_width": 2, # Minimum width of trace to take into account
"max_width": 8,
"step_size": 1,
}
}
# --- Process args --- #
args = get_args()
if args.steps is not None:
config["steps"] = args.steps
if args.raw_pred is not None:
# Load raw_pred(s)
image_list = []
name_list = []
seg_list = []
crossfield_list = []
for raw_pred_filepath in args.raw_pred:
raw_pred = torch.load(raw_pred_filepath)
image_list.append(raw_pred["image"])
name_list.append(raw_pred["name"])
seg_list.append(raw_pred["seg"])
crossfield_list.append(raw_pred["crossfield"])
seg_batch = torch.stack(seg_list, dim=0)
crossfield_batch = torch.stack(crossfield_list, dim=0)
out_contours_batch, out_probs_batch = polygonize(seg_batch, crossfield_batch, config)
for i, raw_pred_filepath in enumerate(args.raw_pred):
image = image_list[i]
name = name_list[i]
polygons = out_contours_batch[i]
base_filepath = os.path.join(os.path.dirname(raw_pred_filepath), name)
filepath = base_filepath + ".poly_acm.pdf"
plot_utils.save_poly_viz(image, polygons, filepath)
# Load gt polygons
save_gt_poly(raw_pred_filepath, name)
elif args.im_filepath:
# Load from filepath, look for seg and crossfield next to the image
# Load data
image = skimage.io.imread(args.im_filepath)
base_filepath = os.path.splitext(args.im_filepath)[0]
seg = skimage.io.imread(base_filepath + ".seg.tif") / 255
crossfield = np.load(base_filepath + ".crossfield.npy", allow_pickle=True)
# Select bbox for dev
if args.bbox is not None:
assert len(args.bbox) == 4, "bbox should have 4 values"
bbox = args.bbox
# bbox = [1440, 210, 1800, 650] # vienna12
# bbox = [2808, 2393, 3124, 2772] # innsbruck19
image = image[bbox[0]:bbox[2], bbox[1]:bbox[3]]
seg = seg[bbox[0]:bbox[2], bbox[1]:bbox[3]]
crossfield = crossfield[bbox[0]:bbox[2], bbox[1]:bbox[3]]
extra_name = ".bbox_{}_{}_{}_{}".format(*bbox)
else:
extra_name = ""
# Convert to torch and add batch dim
seg_batch = torch.tensor(np.transpose(seg[:, :, :2], (2, 0, 1)), dtype=torch.float)[None, ...]
crossfield_batch = torch.tensor(np.transpose(crossfield, (2, 0, 1)), dtype=torch.float)[None, ...]
out_contours_batch, out_probs_batch = polygonize(seg_batch, crossfield_batch, config)
polygons = out_contours_batch[0]
# Save shapefile
# save_utils.save_shapefile(polygons, base_filepath + extra_name, "poly_acm", args.im_filepath)
# Save pdf viz
filepath = base_filepath + extra_name + ".poly_acm.pdf"
plot_utils.save_poly_viz(image, polygons, filepath, linewidths=1, draw_vertices=True, color_choices=[[0, 1, 0, 1]])
elif args.dirpath:
seg_filename_list = fnmatch.filter(os.listdir(args.dirpath), "*.seg.tif")
sorted(seg_filename_list)
pbar = tqdm(seg_filename_list, desc="Poly files")
for id, seg_filename in enumerate(pbar):
basename = seg_filename[:-len(".seg.tif")]
# shp_filepath = os.path.join(args.dirpath, basename + ".poly_acm.shp")
# Verify if image has already been polygonized
# if os.path.exists(shp_filepath):
# continue
pbar.set_postfix(name=basename, status="Loading data...")
crossfield_filename = basename + ".crossfield.npy"
metadata_filename = basename + ".metadata.json"
seg = skimage.io.imread(os.path.join(args.dirpath, seg_filename)) / 255
crossfield = np.load(os.path.join(args.dirpath, crossfield_filename), allow_pickle=True)
metadata = python_utils.load_json(os.path.join(args.dirpath, metadata_filename))
# image_filepath = metadata["image_filepath"]
# as_shp_filename = os.path.splitext(os.path.basename(image_filepath))[0]
# as_shp_filepath = os.path.join(os.path.dirname(os.path.dirname(image_filepath)), "gt_polygons", as_shp_filename + ".shp")
# Convert to torch and add batch dim
seg_batch = torch.tensor(np.transpose(seg[:, :, :2], (2, 0, 1)), dtype=torch.float)[None, ...]
crossfield_batch = torch.tensor(np.transpose(crossfield, (2, 0, 1)), dtype=torch.float)[None, ...]
pbar.set_postfix(name=basename, status="Polygonazing...")
out_contours_batch, out_probs_batch = polygonize(seg_batch, crossfield_batch, config)
polygons = out_contours_batch[0]
# Save as shp
# pbar.set_postfix(name=basename, status="Saving .shp...")
# geo_utils.save_shapefile_from_shapely_polygons(polygons, shp_filepath, as_shp_filepath)
# Save as COCO annotation
base_filepath = os.path.join(args.dirpath, basename)
inference.save_poly_coco(polygons, id, base_filepath, "annotation.poly")
else:
print("Showcase on a very simple example:")
seg = np.zeros((6, 8, 3))
# Triangle:
seg[1, 4] = 1
seg[2, 3:5] = 1
seg[3, 2:5] = 1
seg[4, 1:5] = 1
# L extension:
seg[3:5, 5:7] = 1
u = np.zeros((6, 8), dtype=np.complex)
v = np.zeros((6, 8), dtype=np.complex)
# Init with grid
u.real = 1
v.imag = 1
# Add slope
u[:4, :4] *= np.exp(1j * np.pi/4)
v[:4, :4] *= np.exp(1j * np.pi/4)
# Add slope corners
# u[:2, 4:6] *= np.exp(1j * np.pi / 4)
# v[4:, :2] *= np.exp(- 1j * np.pi / 4)
crossfield = math_utils.compute_crossfield_c0c2(u, v)
seg_batch = torch.tensor(np.transpose(seg[:, :, :2], (2, 0, 1)), dtype=torch.float)[None, ...]
crossfield_batch = torch.tensor(np.transpose(crossfield, (2, 0, 1)), dtype=torch.float)[None, ...]
out_contours_batch, out_probs_batch = polygonize(seg_batch, crossfield_batch, config)
polygons = out_contours_batch[0]
filepath = "demo_poly_acm.pdf"
plot_utils.save_poly_viz(seg, polygons, filepath, linewidths=0.5, draw_vertices=True, crossfield=crossfield)
if __name__ == '__main__':
main()
|