File size: 12,367 Bytes
abd2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
from collections import OrderedDict
from torch import nn
from torch.nn import functional as F
import torch
import torch.utils.checkpoint

# from pytorch_memlab import profile, profile_every


def humanbytes(B):
    'Return the given bytes as a human friendly KB, MB, GB, or TB string'
    B = float(B)
    KB = float(1024)
    MB = float(KB ** 2)  # 1,048,576
    GB = float(KB ** 3)  # 1,073,741,824
    TB = float(KB ** 4)  # 1,099,511,627,776

    if B < KB:
        return '{0} {1}'.format(B, 'Bytes' if 0 == B > 1 else 'Byte')
    elif KB <= B < MB:
        return '{0:.2f} KB'.format(B / KB)
    elif MB <= B < GB:
        return '{0:.2f} MB'.format(B / MB)
    elif GB <= B < TB:
        return '{0:.2f} GB'.format(B / GB)
    elif TB <= B:
        return '{0:.2f} TB'.format(B / TB)


def get_preact_conv(in_channels, out_channels, kernel_size=3, padding=1, dropout_2d=0.2):
    block = nn.Sequential(
        nn.BatchNorm2d(in_channels),
        nn.ReLU(inplace=True),
        nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding),
        nn.Dropout2d(dropout_2d)
    )
    return block


def _dense_layer_function_factory(norm, relu, conv):
    def bn_function(*inputs):
        concated_features = torch.cat(inputs, 1)
        bottleneck_output = conv(relu(norm(concated_features)))
        return bottleneck_output

    return bn_function


class DenseLayer(nn.Module):
    def __init__(self, in_channels, out_channels, dropout_2d=0.2, efficient=False):
        super(DenseLayer, self).__init__()
        self.add_module('norm', nn.BatchNorm2d(in_channels)),
        self.add_module('relu', nn.ReLU(inplace=True)),
        self.add_module('conv', nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)),
        self.dropout_2d = dropout_2d
        self.efficient = efficient

    def forward(self, *prev_features):
        dense_layer_function = _dense_layer_function_factory(self.norm, self.relu, self.conv)
        if self.efficient and any(prev_feature.requires_grad for prev_feature in prev_features):
            new_features = torch.utils.checkpoint.checkpoint(dense_layer_function, *prev_features)
        else:
            new_features = dense_layer_function(*prev_features)
        if 0 < self.dropout_2d:
            new_features = F.dropout2d(new_features, p=self.dropout_2d, training=self.training)
        return new_features


class SELayer(nn.Module):
    def __init__(self, in_channels, ratio):
        super(SELayer, self).__init__()
        self.block = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),  # Global average pooling
            nn.Flatten(),  # Prepare for fully-connected layers
            nn.Linear(in_channels, in_channels // ratio),
            nn.ReLU(inplace=True),
            nn.Linear(in_channels // ratio, in_channels),
            nn.Sigmoid()
        )

    def forward(self, x):
        excitation = self.block(x)
        x *= excitation[:, :, None, None]
        return x


class DenseBlock(nn.Module):
    def __init__(self, in_channels, n_layers, growth_rate, dropout_2d, return_only_new=False, efficient=False):
        super(DenseBlock, self).__init__()
        assert 0 < n_layers, "n_layers should be at least 1"
        self.in_channels = in_channels
        self.return_only_new = return_only_new

        channels = in_channels
        self.layers = torch.nn.ModuleList()
        for j in range(n_layers):
            # Compute new feature maps
            layer = DenseLayer(channels, growth_rate, dropout_2d=dropout_2d, efficient=efficient)
            self.layers.append(layer)
            channels += growth_rate

        if return_only_new:
            se_layer_in_channel = channels - in_channels  # Remove input, only keep new features
        else:
            se_layer_in_channel = channels
        self.se_layer = SELayer(se_layer_in_channel, ratio=1)

    # @profile_every(1)
    def forward(self, x):
        features = [x]
        for layer in self.layers:
            new_features = layer(*features)
            features.append(new_features)

        if self.return_only_new:
            features = features[1:]

        features = torch.cat(features, 1)
        features = self.se_layer(features)

        return features


def get_transition_down(in_channels, out_channels, dropout_2d=0.2):
    block = nn.Sequential(
        get_preact_conv(in_channels, out_channels, kernel_size=1, padding=0, dropout_2d=dropout_2d),
        nn.MaxPool2d(kernel_size=2, stride=2)
    )
    return block


def cat_non_matching(x1, x2):
    diffY = x1.size()[2] - x2.size()[2]
    diffX = x1.size()[3] - x2.size()[3]

    x2 = F.pad(x2, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2))

    # for padding issues, see
    # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
    # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd

    x = torch.cat([x1, x2], dim=1)
    return x


class TransitionUp(nn.Module):
    def __init__(self, in_channels, n_filters_keep):
        super(TransitionUp, self).__init__()
        self.conv_transpose_2d = nn.ConvTranspose2d(in_channels, n_filters_keep, kernel_size=4, stride=2, padding=1)

    def forward(self, x, skip_connection):
        x = self.conv_transpose_2d(x)
        x = cat_non_matching(x, skip_connection)
        return x


class ICTNetBackbone(nn.Module):
    """
    ICTNet model: https://theictlab.org/lp/2019ICTNet.
    """
    def __init__(self, preset_model='FC-DenseNet56', in_channels=3, out_channels=2, n_filters_first_conv=48, n_pool=5, growth_rate=12, n_layers_per_block=4, dropout_2d=0.2, efficient=False):
        super().__init__()

        # --- Handle args
        if preset_model == 'FC-DenseNet56':
            n_pool = 5
            growth_rate = 12
            n_layers_per_block = 4
        elif preset_model == 'FC-DenseNet67':
            n_pool = 5
            growth_rate = 16
            n_layers_per_block = 5
        elif preset_model == 'FC-DenseNet103':
            n_pool = 5
            growth_rate = 16
            n_layers_per_block = [4, 5, 7, 10, 12, 15, 12, 10, 7, 5, 4]
        else:
            n_pool = n_pool
            growth_rate = growth_rate
            n_layers_per_block = n_layers_per_block

        if type(n_layers_per_block) == list:
            assert (len(n_layers_per_block) == 2 * n_pool + 1)
        elif type(n_layers_per_block) == int:
            n_layers_per_block = [n_layers_per_block] * (2 * n_pool + 1)
        else:
            raise ValueError

        # --- Instantiate layers
        self.first_conv = nn.Conv2d(in_channels, n_filters_first_conv, 3, padding=1)

        # Downsampling path
        channels = n_filters_first_conv
        self.down_dense_blocks = torch.nn.ModuleList()
        self.transition_downs = torch.nn.ModuleList()
        skip_connection_channels = []
        for i in range(n_pool):
            # Dense Block
            self.down_dense_blocks.append(DenseBlock(in_channels=channels, n_layers=n_layers_per_block[i], growth_rate=growth_rate, dropout_2d=dropout_2d, return_only_new=False, efficient=efficient))
            channels += growth_rate * n_layers_per_block[i]
            skip_connection_channels.append(channels)
            # Transition Down
            self.transition_downs.append(get_transition_down(in_channels=channels, out_channels=channels, dropout_2d=dropout_2d))

        # Bottleneck Dense Block
        self.bottleneck_dense_block = DenseBlock(in_channels=channels, n_layers=n_layers_per_block[n_pool], growth_rate=growth_rate, dropout_2d=dropout_2d, return_only_new=True, efficient=efficient)
        up_in_channels = n_layers_per_block[n_pool] * growth_rate  # We will only upsample the new feature maps

        # Upsampling path
        self.transition_ups = torch.nn.ModuleList()
        self.up_dense_blocks = torch.nn.ModuleList()
        for i in range(n_pool):
            # Transition Up (Upsampling + concatenation with the skip connection)
            n_filters_keep = growth_rate * n_layers_per_block[n_pool + i]
            self.transition_ups.append(TransitionUp(in_channels=up_in_channels, n_filters_keep=n_filters_keep))
            up_out_channels = skip_connection_channels[n_pool - i - 1] + n_filters_keep  # After concatenation

            # Dense Block
            # We will only upsample the new feature maps
            self.up_dense_blocks.append(
                DenseBlock(in_channels=up_out_channels, n_layers=n_layers_per_block[n_pool + i + 1], growth_rate=growth_rate,
                           dropout_2d=dropout_2d, return_only_new=True, efficient=efficient))
            up_in_channels = growth_rate * n_layers_per_block[n_pool + i + 1]  # We will only upsample the new feature maps

        # Last layer
        self.final_conv = nn.Conv2d(up_in_channels, out_channels, 1, padding=0)

    # @profile
    def forward(self, x):
        stack = self.first_conv(x)

        skip_connection_list = []
        # print(humanbytes(torch.cuda.memory_allocated()))
        for down_dense_block, transition_down in zip(self.down_dense_blocks, self.transition_downs):
            # Dense Block
            stack = down_dense_block(stack)

            # At the end of the dense block, the current stack is stored in the skip_connections list
            skip_connection_list.append(stack)

            # Transition Down
            stack = transition_down(stack)
        # print(humanbytes(torch.cuda.memory_allocated()))

        skip_connection_list = skip_connection_list[::-1]

        # Bottleneck Dense Block
        # We will only upsample the new feature maps
        stack = self.bottleneck_dense_block(stack)

        # Upsampling path
        # print(humanbytes(torch.cuda.memory_allocated()))
        for transition_up, up_dense_block, skip_connection in zip(self.transition_ups, self.up_dense_blocks, skip_connection_list):
            # Transition Up ( Upsampling + concatenation with the skip connection)
            stack = transition_up(stack, skip_connection)

            # Dense Block
            # We will only upsample the new feature maps
            stack = up_dense_block(stack)
        # print(humanbytes(torch.cuda.memory_allocated()))

        # Final conv
        stack = self.final_conv(stack)

        result = OrderedDict()
        result["out"] = stack

        # print(humanbytes(torch.cuda.memory_allocated()))

        return result


def count_trainable_params(model):
    count = 0
    for param in model.parameters():
        if param.requires_grad:
            count += param.numel()
    return count


def main():
    device = "cuda"
    b = 2
    c = 3
    h = 512
    w = 512
    features = 32

    # Init input
    x = torch.rand((b, c, h, w), device=device)
    print("x: ", x.shape, x.min().item(), x.max().item())

    # # Test SELayer
    # print("--- Test SELayer:")
    # se_layer = SELayer(in_channels=c, ratio=1)
    # y = se_layer(x)
    # print("y: ", y.shape)
    # print("------")

    # # Test DenseBlock
    # print("--- Test DenseBlock:")
    # dense_block = DenseBlock(in_channels=c, n_layers=5, growth_rate=16, dropout_2d=0.2, path_type="down")
    # y, new_y = dense_block(x)
    # print("y: ", y.shape)
    # print("new_y: ", new_y.shape)
    # print("------")

    # # Test transition_down
    # print("--- Test transition_down:")
    # transition_down = get_transition_down(in_channels=c, out_channels=features, dropout_2d=0.2)
    # x_down = transition_down(x)
    # print("x_down: ", x_down.shape)
    # print("------")
    #
    # # Test TransitionUp
    # print("--- Test TransitionUp:")
    # transition_up = TransitionUp(in_channels=features, n_filters_keep=features//2)
    # y = transition_up(x_down, x)
    # print("y: ", y.shape)
    # print("------")

    # Test ICTNetBackboneICTNetBackboneTest SELayer:")
    backbone = ICTNetBackbone(out_channels=features, preset_model="FC-DenseNet103", dropout_2d=0.0, efficient=True)
    print("ICTNetBackbone has {} trainable params".format(count_trainable_params(backbone)))
    # print(backbone)
    backbone.to(device)
    result = backbone(x)
    y = result["out"]
    print("y: ", y.shape)
    print("------")

    print("Back-prop:")
    loss = torch.sum(y)
    loss.backward()


if __name__ == "__main__":
    main()