File size: 12,963 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import itertools
import os
import numpy as np
import pycocotools.mask
import shapely.geometry
import torch
import skimage.morphology
import skimage.measure
from lydorn_utils import python_utils, geo_utils, math_utils
import cv2
from frame_field_learning import plot_utils, local_utils
import tifffile
def get_save_filepath(base_filepath, name=None, ext=""):
if type(base_filepath) is tuple:
if name is not None:
save_filepath = os.path.join(base_filepath[0], name, base_filepath[1] + ext)
else:
save_filepath = os.path.join(base_filepath[0], base_filepath[1] + ext)
elif type(base_filepath) is str:
if name is not None:
save_filepath = base_filepath + "." + name + ext
else:
save_filepath = base_filepath + ext
else:
raise TypeError(f"base_filepath should be either of tuple or str, not {type(base_filepath)}")
os.makedirs(os.path.dirname(save_filepath), exist_ok=True)
return save_filepath
def save_outputs(tile_data, config, eval_dirpath, split_name, flag_filepath_format):
# print("--- save_outputs() ---")
split_eval_dirpath = os.path.join(eval_dirpath, split_name)
if not os.path.exists(split_eval_dirpath):
os.makedirs(split_eval_dirpath)
base_filepath = os.path.join(split_eval_dirpath, tile_data["name"])
if "image_relative_filepath" in tile_data:
image_filepath = os.path.join(config["data_root_dir"], tile_data["image_relative_filepath"])
elif "image_filepath" in tile_data:
image_filepath = tile_data["image_filepath"]
else:
raise ValueError("Could not get image_filepath from tile_data")
if config["eval_params"]["save_individual_outputs"]["image"]:
src_filepath = "/data" + image_filepath # Because we are executing in Docker, this is a hack!
filepath = base_filepath + ".image"
if os.path.islink(filepath):
os.remove(filepath)
os.symlink(src_filepath, filepath)
if config["eval_params"]["save_individual_outputs"]["seg_gt"]:
save_seg(tile_data["gt_polygons_image"], base_filepath, "seg.gt", image_filepath)
if config["eval_params"]["save_individual_outputs"]["seg"]:
save_seg(tile_data["seg"], base_filepath, "seg", image_filepath)
if config["eval_params"]["save_individual_outputs"]["seg_mask"]:
save_seg_mask(tile_data["seg_mask"], (split_eval_dirpath, tile_data["name"]), "seg_mask", image_filepath)
if config["eval_params"]["save_individual_outputs"]["seg_opencities_mask"]:
save_opencities_mask(tile_data["seg_mask"], base_filepath, "drivendata",
image_filepath)
if config["eval_params"]["save_individual_outputs"]["seg_luxcarta"]:
save_seg_luxcarta_format(tile_data["seg"], base_filepath, "seg_luxcarta_format",
image_filepath)
if config["eval_params"]["save_individual_outputs"]["crossfield"]:
save_crossfield(tile_data["crossfield"], base_filepath, "crossfield")
if config["eval_params"]["save_individual_outputs"]["uv_angles"]:
save_uv_angles(tile_data["crossfield"], base_filepath, "uv_angles",
image_filepath)
if config["eval_params"]["save_individual_outputs"]["poly_shapefile"]:
save_shapefile(tile_data["polygons"], base_filepath, "poly_shapefile", image_filepath)
if config["eval_params"]["save_individual_outputs"]["poly_geojson"]:
save_geojson(tile_data["polygons"], base_filepath, "poly_geojson", image_filepath)
if "poly_viz" in config["eval_params"]["save_individual_outputs"] and config["eval_params"]["save_individual_outputs"]["poly_viz"]:
save_poly_viz(tile_data["image"], tile_data["polygons"], tile_data["polygon_probs"], base_filepath, "poly_viz")
if "raw_pred" in config["eval_params"]["save_individual_outputs"] and config["eval_params"]["save_individual_outputs"]["raw_pred"]:
save_raw_pred(tile_data, base_filepath, "raw_pred")
# Save a flag file to mark this sample as evaluated
# pathlib.Path(flag_filepath_format.format(tile_data["name"])).touch()
# print("Finished saving")
def save_seg(seg, base_filepath, name, image_filepath):
seg = np.transpose(seg.numpy(), (1, 2, 0))
# seg = torch_utils.to_numpy_image(seg)
seg_display = plot_utils.get_seg_display(seg)
if seg_display.dtype != np.uint8:
seg_display = (255 * seg_display).astype(np.uint8)
seg_display_filepath = get_save_filepath(base_filepath, name, ".tif")
# with warnings.catch_warnings():
# warnings.simplefilter("ignore")
# skimage.io.imsave(seg_display_filepath_jpg, seg_display)
geo_utils.save_image_as_geotiff(seg_display_filepath, seg_display, image_filepath)
return seg_display_filepath
def save_seg_mask(seg_mask, base_filepath, name, image_filepath):
seg_mask = seg_mask.numpy()
out = (255 * seg_mask).astype(np.uint8)[:, :, None]
out_filepath = get_save_filepath(base_filepath, name, ".tif")
geo_utils.save_image_as_geotiff(out_filepath, out, image_filepath)
return out_filepath
def save_seg_luxcarta_format(seg, base_filepath, name, image_filepath):
seg = np.transpose(seg.numpy(), (1, 2, 0))
seg_luxcarta = np.zeros((seg.shape[0], seg.shape[1], 1), dtype=np.uint8)
seg_interior = 0.5 < seg[..., 0]
seg_luxcarta[seg_interior] = 1
if 2 <= seg.shape[2]:
seg_edge = 0.5 < seg[..., 1]
seg_luxcarta[seg_edge] = 2
seg_luxcarta_filepath = get_save_filepath(base_filepath, name, ".tif")
geo_utils.save_image_as_geotiff(seg_luxcarta_filepath, seg_luxcarta, image_filepath)
def save_poly_viz(image, polygons, polygon_probs, base_filepath, name):
if type(image) == torch.Tensor:
image = np.transpose(image.numpy(), (1, 2, 0))
if type(polygons) == dict:
# Means several methods/settings were used
for key in polygons.keys():
save_poly_viz(image, polygons[key], polygon_probs[key], base_filepath, name + "." + key)
elif type(polygons) == list:
filepath = get_save_filepath(base_filepath, name, ".pdf")
plot_utils.save_poly_viz(image, polygons, filepath, polygon_probs=polygon_probs)
else:
raise TypeError("polygons has unrecognized type {}".format(type(polygons)))
def save_shapefile(polygons, base_filepath, name, image_filepath):
if type(polygons) == dict:
# Means several methods/settings were used
for key, item in polygons.items():
save_shapefile(item, base_filepath, name + "." + key, image_filepath)
elif type(polygons) == list:
filepath = get_save_filepath(base_filepath, name, ".shp")
if type(polygons[0]) == np.array:
geo_utils.save_shapefile_from_polygons(polygons, image_filepath, filepath)
elif type(polygons[0]) == shapely.geometry.polygon.Polygon:
geo_utils.save_shapefile_from_shapely_polygons(polygons, image_filepath, filepath)
else:
raise TypeError("polygons has unrecognized type {}".format(type(polygons)))
def save_geojson(polygons, base_filepath, name=None, image_filepath=None):
# TODO: add georef and features
filepath = get_save_filepath(base_filepath, name, ".geojson")
polygons_geometry_collection = shapely.geometry.collection.GeometryCollection(polygons)
geojson = shapely.geometry.mapping(polygons_geometry_collection)
python_utils.save_json(filepath, geojson)
def poly_coco(polygons: list, polygon_probs: list, image_id: int):
if type(polygons) == dict:
# Means several methods/settings were used
annotations_dict = {}
for key in polygons.keys():
_polygons = polygons[key]
_polygon_probs = polygon_probs[key]
annotations_dict[key] = poly_coco(_polygons, _polygon_probs, image_id)
return annotations_dict
elif type(polygons) == list:
annotations = []
for polygon, prob in zip(polygons, polygon_probs):
bbox = np.round([polygon.bounds[0], polygon.bounds[1],
polygon.bounds[2] - polygon.bounds[0], polygon.bounds[3] - polygon.bounds[1]], 2)
exterior = list(np.round(np.array(polygon.exterior.coords).reshape(-1), 2))
# interiors = [list(np.round(np.array(interior.coords).reshape(-1), 2)) for interior in polygon.interiors]
# segmentation = [exterior, *interiors]
segmentation = [exterior]
score = prob
annotation = {
"category_id": 100, # Building
"bbox": list(bbox),
"segmentation": segmentation,
"score": score,
"image_id": image_id}
annotations.append(annotation)
return annotations
else:
raise TypeError("polygons has unrecognized type {}".format(type(polygons)))
def save_poly_coco(annotations: list, base_filepath: str):
"""
@param annotations: Either [[annotation1 of im1, annotation2 of im1, ...], ...] or [{"method1": [annotation1 of im1, ...]}, ...]
@param base_filepath:
@return:
"""
# seg_coco_list is either a list of annotations or a list of dictionaries for each method (and sub-methods) used
if type(annotations[0]) == dict:
# Means several methods/settings were used
# Transform list of dicts to a dict of lists:
dictionary = local_utils.list_of_dicts_to_dict_of_lists(annotations)
dictionary = local_utils.flatten_dict(dictionary)
for key, _annotations in dictionary.items():
out_filepath = base_filepath + "." + key + ".json"
python_utils.save_json(out_filepath, _annotations)
elif type(annotations[0]) == list:
# Concatenate all lists
flattened_annotations = list(itertools.chain(*annotations))
out_filepath = get_save_filepath(base_filepath, None, ".json")
python_utils.save_json(out_filepath, flattened_annotations)
else:
raise TypeError("annotations has unrecognized type {}".format(type(annotations)))
def seg_coco(sample):
annotations = []
# Have to convert binary mask to a list of annotations
seg_interior = sample["seg"][0, :, :].numpy()
seg_mask = sample["seg_mask"].numpy()
labels = skimage.morphology.label(seg_mask)
properties = skimage.measure.regionprops(labels, cache=True)
for i, contour_props in enumerate(properties):
skimage_bbox = contour_props["bbox"]
obj_mask = seg_mask[skimage_bbox[0]:skimage_bbox[2], skimage_bbox[1]:skimage_bbox[3]]
obj_seg_interior = seg_interior[skimage_bbox[0]:skimage_bbox[2], skimage_bbox[1]:skimage_bbox[3]]
score = float(np.mean(obj_seg_interior * obj_mask))
coco_bbox = [skimage_bbox[1], skimage_bbox[0],
skimage_bbox[3] - skimage_bbox[1], skimage_bbox[2] - skimage_bbox[0]]
image_mask = labels == (i + 1) # The mask has to span the whole image
rle = pycocotools.mask.encode(np.asfortranarray(image_mask))
rle["counts"] = rle["counts"].decode("utf-8")
image_id = sample["image_id"].item()
annotation = {
"category_id": 100, # Building
"bbox": coco_bbox,
"segmentation": rle,
"score": score,
"image_id": image_id}
annotations.append(annotation)
return annotations
def save_seg_coco(sample, base_filepath, name):
filepath = get_save_filepath(base_filepath, name, ".json")
annotations = seg_coco(sample)
python_utils.save_json(filepath, annotations)
def save_crossfield(crossfield, base_filepath, name):
# TODO: optimize crossfield disk space
# Save raw crossfield
crossfield = np.transpose(crossfield.numpy(), (1, 2, 0))
crossfield_filepath =get_save_filepath(base_filepath, name, ".npy")
np.save(crossfield_filepath, crossfield)
def save_uv_angles(crossfield, base_filepath, name, image_filepath):
crossfield = np.transpose(crossfield.numpy(), (1, 2, 0))
u, v = math_utils.compute_crossfield_uv(crossfield) # u, v are complex arrays
u_angle, v_angle = np.angle(u), np.angle(v)
u_angle, v_angle = np.mod(u_angle, np.pi), np.mod(v_angle, np.pi)
uv_angles = np.stack([u_angle, v_angle], axis=-1)
uv_angles_as_image = np.round(uv_angles * 255 / np.pi).astype(np.uint8)
save_filepath = get_save_filepath(base_filepath, name, ".tif")
geo_utils.save_image_as_geotiff(save_filepath, uv_angles_as_image, image_filepath)
def save_raw_pred(sample, base_filepath, name):
save_filepath =get_save_filepath(base_filepath, name, ".pt")
torch.save(sample, save_filepath)
def save_opencities_mask(seg_mask, base_filepath, name, image_filepath):
seg_mask = seg_mask.numpy()
out_filepath = get_save_filepath(base_filepath, name, ".tif")
tifffile.imwrite(out_filepath, np.logical_not((np.array(seg_mask).astype(np.bool))))
|