File size: 7,896 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import argparse
import os
import torch
import numpy as np
import skimage
import skimage.measure
import skimage.io
import shapely.geometry
import shapely.ops
from PIL import Image
from multiprocess import Pool
from tqdm import tqdm
from functools import partial
from lydorn_utils import print_utils, geo_utils
from frame_field_learning import polygonize_utils, plot_utils
DEBUG = False
def debug_print(s: str):
if DEBUG:
print_utils.print_debug(s)
def get_args():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'--seg_filepath',
required=True,
nargs='*',
type=str,
help='Filepath(s) to input segmentation/mask image.')
argparser.add_argument(
'--im_dirpath',
required=True,
type=str,
help='Path to the directory containing the corresponding images os the segmentation/mask. '
'Files must have the same filename as --seg_filepath.'
'Used for vizualization or saving the shapefile with the same coordinate system as that image.')
argparser.add_argument(
'--out_dirpath',
required=True,
type=str,
help='Path to the output directory.')
argparser.add_argument(
'--out_ext',
type=str,
default="shp",
choices=['pdf', 'shp'],
help="File extension of the output. "
"'pdf': pdf visualization (requires --im_dirpath for the image), 'shp': shapefile")
argparser.add_argument(
'--bbox',
nargs='*',
type=int,
help='Selects area in bbox for computation.')
args = argparser.parse_args()
return args
def simplify(polygons, probs, tolerance):
if type(tolerance) == list:
out_polygons_dict = {}
out_probs_dict = {}
for tol in tolerance:
out_polygons, out_probs = simplify(polygons, probs, tol)
out_polygons_dict["tol_{}".format(tol)] = out_polygons
out_probs_dict["tol_{}".format(tol)] = out_probs
return out_polygons_dict, out_probs_dict
else:
out_polygons = [polygon.simplify(tolerance, preserve_topology=True) for polygon in polygons]
return out_polygons, probs
def shapely_postprocess(out_contours, np_indicator, config):
height = np_indicator.shape[0]
width = np_indicator.shape[1]
# Handle holes:
line_string_list = [shapely.geometry.LineString(out_contour[:, ::-1]) for out_contour in out_contours]
# Add image boundary line_strings for border polygons
line_string_list.append(
shapely.geometry.LinearRing([
(0, 0),
(0, height - 1),
(width - 1, height - 1),
(width - 1, 0),
]))
# Merge polylines (for border polygons):
multi_line_string = shapely.ops.unary_union(line_string_list)
# Find polygons:
polygons, dangles, cuts, invalids = shapely.ops.polygonize_full(multi_line_string)
polygons = list(polygons)
# Remove small polygons
polygons = [polygon for polygon in polygons if
config["min_area"] < polygon.area]
# Remove low prob polygons
filtered_polygons = []
filtered_polygon_probs = []
for polygon in polygons:
prob = polygonize_utils.compute_geom_prob(polygon, np_indicator)
# print("simple:", np_indicator.min(), np_indicator.mean(), np_indicator.max(), prob)
if config["seg_threshold"] < prob:
filtered_polygons.append(polygon)
filtered_polygon_probs.append(prob)
polygons, probs = simplify(filtered_polygons, filtered_polygon_probs, config["tolerance"])
return polygons, probs
def polygonize(seg_batch, config, pool=None, pre_computed=None):
# tic_total = time.time()
assert len(seg_batch.shape) == 4 and seg_batch.shape[
1] <= 3, "seg_batch should be (N, C, H, W) with C <= 3, not {}".format(seg_batch.shape)
# Indicator
# tic = time.time()
indicator_batch = seg_batch[:, 0, :, :]
np_indicator_batch = indicator_batch.cpu().numpy()
# toc = time.time()
# debug_print(f"Indicator to cpu: {toc - tic}s")
if pre_computed is None or "init_contours_batch" not in pre_computed:
# tic = time.time()
init_contours_batch = polygonize_utils.compute_init_contours_batch(np_indicator_batch, config["data_level"], pool=pool)
# toc = time.time()
# debug_print(f"Init contours: {toc - tic}s")
else:
init_contours_batch = pre_computed["init_contours_batch"]
# tic = time.time()
# Convert contours to shapely polygons to handle holes:
if pool is not None:
shapely_postprocess_partial = partial(shapely_postprocess, config=config)
polygons_probs_batch = pool.starmap(shapely_postprocess_partial, zip(init_contours_batch, np_indicator_batch))
polygons_batch, probs_batch = zip(*polygons_probs_batch)
else:
polygons_batch = []
probs_batch = []
for i, out_contours in enumerate(init_contours_batch):
polygons, probs = shapely_postprocess(out_contours, np_indicator_batch[i], config)
polygons_batch.append(polygons)
probs_batch.append(probs)
# toc = time.time()
# debug_print(f"Shapely post-process: {toc - tic}s")
# toc_total = time.time()
# debug_print(f"Total: {toc_total - tic_total}s")
return polygons_batch, probs_batch
def run_one(seg_filepath, out_dirpath, config, im_dirpath, out_ext=None, bbox=None):
filename = os.path.basename(seg_filepath)
name = os.path.splitext(filename)[0]
# Load image
image = None
im_filepath = os.path.join(im_dirpath, name + ".tif")
if out_ext == "pdf":
image = skimage.io.imread(im_filepath)
# seg = skimage.io.imread(seg_filepath) / 255
seg_img = Image.open(seg_filepath)
seg = np.array(seg_img)
if seg.dtype == np.uint8:
seg = seg / 255
elif seg.dtype == np.bool:
seg = seg.astype(np.float)
# Select bbox for dev
if bbox is not None:
assert len(bbox) == 4, "bbox should have 4 values"
# bbox = [1440, 210, 1800, 650] # vienna12
# bbox = [2808, 2393, 3124, 2772] # innsbruck19
if image is not None:
image = image[bbox[0]:bbox[2], bbox[1]:bbox[3]]
seg = seg[bbox[0]:bbox[2], bbox[1]:bbox[3]]
extra_name = ".bbox_{}_{}_{}_{}".format(*bbox)
else:
extra_name = ""
# Convert to torch and add batch dim
if len(seg.shape) < 3:
seg = seg[:, :, None]
seg_batch = torch.tensor(np.transpose(seg[:, :, :2], (2, 0, 1)), dtype=torch.float)[None, ...]
out_contours_batch, out_probs_batch = polygonize(seg_batch, config)
polygons = out_contours_batch[0]
if out_ext == "shp":
out_filepath = os.path.join(out_dirpath, name + ".shp")
geo_utils.save_shapefile_from_shapely_polygons(polygons, im_filepath, out_filepath)
elif out_ext == "pdf":
base_filepath = os.path.splitext(seg_filepath)[0]
filepath = base_filepath + extra_name + ".poly_simple.pdf"
# plot_utils.save_poly_viz(image, polygons, filepath, linewidths=1, draw_vertices=True, color_choices=[[0, 1, 0, 1]])
plot_utils.save_poly_viz(image, polygons, filepath, markersize=30, linewidths=1, draw_vertices=True)
else:
raise ValueError(f"out_ext should be shp or pdf, not {out_ext}")
def main():
config = {
"data_level": 0.5,
"tolerance": 1.0,
"seg_threshold": 0.5,
"min_area": 10
}
# --- Process args --- #
args = get_args()
pool = Pool()
list(tqdm(pool.imap(partial(run_one, out_dirpath=args.out_dirpath, config=config, im_dirpath=args.im_dirpath, out_ext=args.out_ext, bbox=args.bbox), args.seg_filepath), desc="Simple poly.", total=len(args.seg_filepath)))
if __name__ == '__main__':
main()
|