File size: 6,900 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import functools
import os
import subprocess
import sys
import time
from lydorn_utils import run_utils, print_utils
from lydorn_utils import python_utils
def compute_max_disp(disp_params):
m_g_t = disp_params["max_global_translation"]
m_g_h = disp_params["max_global_homography"]
m_p_t = disp_params["max_poly_translation"]
m_p_h = disp_params["max_poly_homography"]
m_h_c = disp_params["max_homography_coef"]
return (m_g_t + m_h_c*m_g_h) + (m_p_t + m_h_c*m_p_h)
def get_git_revision_hash():
try:
hash = subprocess.check_output(['git', 'rev-parse', 'HEAD'], stderr=subprocess.STDOUT).decode("utf-8")[:-1]
except subprocess.CalledProcessError:
hash = None
return hash
def setup_run(config):
run_name = config["run_name"]
new_run = config["new_run"]
init_run_name = config["init_run_name"]
working_dir = os.path.dirname(os.path.abspath(__file__))
runs_dir = os.path.join(working_dir, config["runs_dirpath"])
# setup init checkpoints directory path if one is specified:
if init_run_name is not None:
init_run_dirpath = run_utils.setup_run_dir(runs_dir, init_run_name)
_, init_checkpoints_dirpath = run_utils.setup_run_subdirs(init_run_dirpath)
else:
init_checkpoints_dirpath = None
# setup run directory:
run_dirpath = run_utils.setup_run_dir(runs_dir, run_name, new_run)
# save config in logs directory
run_utils.save_config(config, run_dirpath)
# save args
args_filepath = os.path.join(run_dirpath, "args.json")
args_to_save = {
"run_name": run_name,
"new_run": new_run,
"init_run_name": init_run_name,
"batch_size": config["optim_params"]["batch_size"],
}
if "samples" in config:
args_to_save["samples"] = config["samples"]
python_utils.save_json(args_filepath, args_to_save)
# save current commit hash
commit_hash = get_git_revision_hash()
if commit_hash is not None:
commit_hash_filepath = os.path.join(run_dirpath, "commit_history.json")
if os.path.exists(commit_hash_filepath):
commit_hashes = python_utils.load_json(commit_hash_filepath)
if commit_hashes[-1] != commit_hash:
commit_hashes.append(commit_hash)
python_utils.save_json(commit_hash_filepath, commit_hashes)
else:
commit_hashes = [commit_hash]
python_utils.save_json(commit_hash_filepath, commit_hashes)
return run_dirpath, init_checkpoints_dirpath
def get_run_dirpath(runs_dirpath, run_name):
working_dir = os.path.dirname(os.path.abspath(__file__))
runs_dir = os.path.join(working_dir, runs_dirpath)
try:
run_dirpath = run_utils.setup_run_dir(runs_dir, run_name, check_exists=True)
except FileNotFoundError as e:
print_utils.print_error(f"ERROR: {e}")
sys.exit()
return run_dirpath
def batch_to_cuda(batch):
# Send data to computing device:
for key, item in batch.items():
if hasattr(item, "cuda"):
batch[key] = item.cuda(non_blocking=True)
return batch
def batch_to_cpu(batch):
# Send data to computing device:
for key, item in batch.items():
if hasattr(item, "cuda"):
batch[key] = item.cpu()
return batch
def split_batch(tile_data):
assert len(tile_data["image"].shape) == 4, "tile_data[\"image\"] should be (N, C, H, W)"
tile_data_list = []
for i in range(tile_data["image"].shape[0]):
individual_tile_data = {}
for key, item in tile_data.items():
if not i < len(item):
print(key, len(item))
individual_tile_data[key] = item[i]
tile_data_list.append(individual_tile_data)
return tile_data_list
def _concat_dictionaries(dict1, dict2):
"""
Recursive concat dictionaries. Dict 1 and Dict 2 must have the same key hierarchy (this is not checked).
:param dict1: Dictionary to add to.
:param dict2: Dictionary to add from
:return: Merged dictionary dict1
"""
for key in dict1.keys():
item1 = dict1[key]
item2 = dict2[key]
if isinstance(item1, dict): # And item2 is dict too.
dict1[key] = _concat_dictionaries(item1, item2)
else:
dict1[key].extend(item2)
return dict1
def _root_concat_dictionaries(dict1, dict2):
t0 = time.time()
dict1 = _concat_dictionaries(dict1, dict2)
print(f"_root_concat_dictionaries: {time.time() - t0:02}s")
return dict1
def list_of_dicts_to_dict_of_lists(list_of_dicts):
"""
Works recursively by using _concat_dictionaries which is recursive
@param list_of_dicts:
@return: dict_of_lists
"""
return functools.reduce(_concat_dictionaries, list_of_dicts)
def flatten_dict(_dict):
"""
Makes a hierarchy of dicts flat
@param _dict:
@return:
"""
new_dict = {}
for key, item in _dict.items():
if isinstance(item, dict):
item = flatten_dict(item)
for k in item.keys():
new_dict[key + "." + k] = item[k]
else:
new_dict[key] = item
return new_dict
def _generate_list_of_dicts(list_length, methods_count, submethods_count, annotation_count, segmentation_length):
list_of_dicts = []
for i in range(list_length):
d = {}
for method_i in range(methods_count):
d[f"method_{method_i}"] = {}
for submethod_i in range(submethods_count):
d[f"method_{method_i}"][f"submethod_{submethod_i}"] = []
for annotation_i in range(annotation_count):
annotation = {
"image_id": 0,
"segmentation": [list(range(segmentation_length))],
"category_id": 100, # Building
"bbox": [0, 1, 0, 1],
"score": 1.0
}
d[f"method_{method_i}"][f"submethod_{submethod_i}"].append(annotation)
list_of_dicts.append(d)
return list_of_dicts
def main():
# list_of_dicts = [
# {
# "method1": {
# "submethod1": [[0, 1, 2, 3], [4, 5, 6]]
# }
# },
# {
# "method1": {
# "submethod1": [[7, 8, 9], [10, 11, 12, 13, 14, 15]]
# }
# },
# ]
t0 = time.time()
list_of_dicts = _generate_list_of_dicts(list_length=2000, methods_count=2, submethods_count=2, annotation_count=100, segmentation_length=200)
print(f"_generate_list_of_dicts: {time.time() - t0:02}s")
t0 = time.time()
dict_of_lists = list_of_dicts_to_dict_of_lists(list_of_dicts)
print(f"list_of_dicts_to_dict_of_lists: {time.time() - t0:02}s")
flat_dict_of_lists = flatten_dict(dict_of_lists)
if __name__ == "__main__":
main()
|