File size: 6,900 Bytes
abd2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import functools
import os
import subprocess
import sys
import time

from lydorn_utils import run_utils, print_utils
from lydorn_utils import python_utils


def compute_max_disp(disp_params):
    m_g_t = disp_params["max_global_translation"]
    m_g_h = disp_params["max_global_homography"]
    m_p_t = disp_params["max_poly_translation"]
    m_p_h = disp_params["max_poly_homography"]
    m_h_c = disp_params["max_homography_coef"]
    return (m_g_t + m_h_c*m_g_h) + (m_p_t + m_h_c*m_p_h)


def get_git_revision_hash():
    try:
        hash = subprocess.check_output(['git', 'rev-parse', 'HEAD'], stderr=subprocess.STDOUT).decode("utf-8")[:-1]
    except subprocess.CalledProcessError:
        hash = None
    return hash


def setup_run(config):
    run_name = config["run_name"]
    new_run = config["new_run"]
    init_run_name = config["init_run_name"]

    working_dir = os.path.dirname(os.path.abspath(__file__))
    runs_dir = os.path.join(working_dir, config["runs_dirpath"])

    # setup init checkpoints directory path if one is specified:
    if init_run_name is not None:
        init_run_dirpath = run_utils.setup_run_dir(runs_dir, init_run_name)
        _, init_checkpoints_dirpath = run_utils.setup_run_subdirs(init_run_dirpath)
    else:
        init_checkpoints_dirpath = None

    # setup run directory:
    run_dirpath = run_utils.setup_run_dir(runs_dir, run_name, new_run)

    # save config in logs directory
    run_utils.save_config(config, run_dirpath)

    # save args
    args_filepath = os.path.join(run_dirpath, "args.json")
    args_to_save = {
        "run_name": run_name,
        "new_run": new_run,
        "init_run_name": init_run_name,
        "batch_size": config["optim_params"]["batch_size"],
    }
    if "samples" in config:
        args_to_save["samples"] = config["samples"]
    python_utils.save_json(args_filepath, args_to_save)

    # save current commit hash
    commit_hash = get_git_revision_hash()
    if commit_hash is not None:
        commit_hash_filepath = os.path.join(run_dirpath, "commit_history.json")
        if os.path.exists(commit_hash_filepath):
            commit_hashes = python_utils.load_json(commit_hash_filepath)
            if commit_hashes[-1] != commit_hash:
                commit_hashes.append(commit_hash)
                python_utils.save_json(commit_hash_filepath, commit_hashes)
        else:
            commit_hashes = [commit_hash]
            python_utils.save_json(commit_hash_filepath, commit_hashes)

    return run_dirpath, init_checkpoints_dirpath


def get_run_dirpath(runs_dirpath, run_name):
    working_dir = os.path.dirname(os.path.abspath(__file__))
    runs_dir = os.path.join(working_dir, runs_dirpath)
    try:
        run_dirpath = run_utils.setup_run_dir(runs_dir, run_name, check_exists=True)
    except FileNotFoundError as e:
        print_utils.print_error(f"ERROR: {e}")
        sys.exit()
    return run_dirpath


def batch_to_cuda(batch):
    # Send data to computing device:
    for key, item in batch.items():
        if hasattr(item, "cuda"):
            batch[key] = item.cuda(non_blocking=True)
    return batch


def batch_to_cpu(batch):
    # Send data to computing device:
    for key, item in batch.items():
        if hasattr(item, "cuda"):
            batch[key] = item.cpu()
    return batch


def split_batch(tile_data):
    assert len(tile_data["image"].shape) == 4, "tile_data[\"image\"] should be (N, C, H, W)"
    tile_data_list = []
    for i in range(tile_data["image"].shape[0]):
        individual_tile_data = {}
        for key, item in tile_data.items():
            if not i < len(item):
                print(key, len(item))
            individual_tile_data[key] = item[i]
        tile_data_list.append(individual_tile_data)
    return tile_data_list


def _concat_dictionaries(dict1, dict2):
    """
    Recursive concat dictionaries. Dict 1 and Dict 2 must have the same key hierarchy (this is not checked).

    :param dict1: Dictionary to add to.
    :param dict2: Dictionary to add from
    :return: Merged dictionary dict1
    """
    for key in dict1.keys():
        item1 = dict1[key]
        item2 = dict2[key]
        if isinstance(item1, dict):  # And item2 is dict too.
            dict1[key] = _concat_dictionaries(item1, item2)
        else:
            dict1[key].extend(item2)
    return dict1


def _root_concat_dictionaries(dict1, dict2):

    t0 = time.time()
    dict1 = _concat_dictionaries(dict1, dict2)
    print(f"_root_concat_dictionaries: {time.time() - t0:02}s")
    return dict1


def list_of_dicts_to_dict_of_lists(list_of_dicts):
    """
    Works recursively by using _concat_dictionaries which is recursive

    @param list_of_dicts:
    @return: dict_of_lists
    """
    return functools.reduce(_concat_dictionaries, list_of_dicts)


def flatten_dict(_dict):
    """
    Makes a hierarchy of dicts flat

    @param _dict:
    @return:
    """
    new_dict = {}
    for key, item in _dict.items():
        if isinstance(item, dict):
            item = flatten_dict(item)
            for k in item.keys():
                new_dict[key + "." + k] = item[k]
        else:
            new_dict[key] = item
    return new_dict


def _generate_list_of_dicts(list_length, methods_count, submethods_count, annotation_count, segmentation_length):
    list_of_dicts = []
    for i in range(list_length):
        d = {}
        for method_i in range(methods_count):
            d[f"method_{method_i}"] = {}
            for submethod_i in range(submethods_count):
                d[f"method_{method_i}"][f"submethod_{submethod_i}"] = []
                for annotation_i in range(annotation_count):
                    annotation = {
                        "image_id": 0,
                        "segmentation": [list(range(segmentation_length))],
                        "category_id": 100,  # Building
                        "bbox": [0, 1, 0, 1],
                        "score": 1.0
                    }
                    d[f"method_{method_i}"][f"submethod_{submethod_i}"].append(annotation)
        list_of_dicts.append(d)
    return list_of_dicts


def main():
    # list_of_dicts = [
    #     {
    #         "method1": {
    #             "submethod1": [[0, 1, 2, 3], [4, 5, 6]]
    #         }
    #     },
    #     {
    #         "method1": {
    #             "submethod1": [[7, 8, 9], [10, 11, 12, 13, 14, 15]]
    #         }
    #     },
    # ]
    t0 = time.time()
    list_of_dicts = _generate_list_of_dicts(list_length=2000, methods_count=2, submethods_count=2, annotation_count=100, segmentation_length=200)
    print(f"_generate_list_of_dicts: {time.time() - t0:02}s")

    t0 = time.time()
    dict_of_lists = list_of_dicts_to_dict_of_lists(list_of_dicts)
    print(f"list_of_dicts_to_dict_of_lists: {time.time() - t0:02}s")

    flat_dict_of_lists = flatten_dict(dict_of_lists)


if __name__ == "__main__":
    main()