File size: 11,546 Bytes
abd2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import csv

from tqdm import tqdm
from multiprocess import Pool, Process, Queue
from functools import partial
import time

import torch
import torch.utils.data
# from pytorch_memlab import profile, profile_every

from . import inference, save_utils, polygonize
from . import local_utils
from . import measures

from lydorn_utils import run_utils
from lydorn_utils import python_utils
from lydorn_utils import print_utils
from lydorn_utils import async_utils


class Evaluator:
    def __init__(self, gpu: int, config: dict, shared_dict, barrier, model, run_dirpath):
        self.gpu = gpu
        self.config = config
        assert 0 < self.config["eval_params"]["batch_size_mult"], \
            "batch_size_mult in polygonize_params should be at least 1."

        self.shared_dict = shared_dict
        self.barrier = barrier
        self.model = model

        self.checkpoints_dirpath = run_utils.setup_run_subdir(run_dirpath,
                                                              config["optim_params"]["checkpoints_dirname"])

        self.eval_dirpath = os.path.join(config["data_root_dir"], "eval_runs", os.path.split(run_dirpath)[-1])
        if self.gpu == 0:
            os.makedirs(self.eval_dirpath, exist_ok=True)
            print_utils.print_info("Saving eval outputs to {}".format(self.eval_dirpath))

    # @profile
    def evaluate(self, split_name: str, ds: torch.utils.data.DataLoader):

        # Prepare data saving:
        flag_filepath_format = os.path.join(self.eval_dirpath, split_name, "{}.flag")

        # Loading model
        self.load_checkpoint()
        self.model.eval()

        # Create pool for multiprocessing
        pool = None
        if not self.config["eval_params"]["patch_size"]:
            # If single image is not being split up, then a pool to process each sample in the batch makes sense
            pool = Pool(processes=self.config["num_workers"])

        compute_polygonization = self.config["eval_params"]["save_individual_outputs"]["poly_shapefile"] or \
                                 self.config["eval_params"]["save_individual_outputs"]["poly_geojson"] or \
                                 self.config["eval_params"]["save_individual_outputs"]["poly_viz"] or \
                                 self.config["eval_params"]["save_aggregated_outputs"]["poly_coco"]

        # Saving individual outputs to disk:
        save_individual_outputs = True in self.config["eval_params"]["save_individual_outputs"].values()
        saver_async = None
        if save_individual_outputs:
            save_outputs_partial = partial(save_utils.save_outputs, config=self.config, eval_dirpath=self.eval_dirpath,
                                           split_name=split_name, flag_filepath_format=flag_filepath_format)
            saver_async = async_utils.Async(save_outputs_partial)
            saver_async.start()

        # Saving aggregated outputs
        save_aggregated_outputs = True in self.config["eval_params"]["save_aggregated_outputs"].values()

        tile_data_list = []

        if self.gpu == 0:
            tile_iterator = tqdm(ds, desc="Eval {}: ".format(split_name), leave=True)
        else:
            tile_iterator = ds
        for tile_i, tile_data in enumerate(tile_iterator):
            # --- Inference, add result to tile_data_list
            if self.config["eval_params"]["patch_size"] is not None:
                # Cut image into patches for inference
                inference.inference_with_patching(self.config, self.model, tile_data)
            else:
                # Feed images as-is to the model
                inference.inference_no_patching(self.config, self.model, tile_data)

            tile_data_list.append(tile_data)

            # --- Accumulate batches into tile_data_list until capacity is reached (or this is the last batch)
            if self.config["eval_params"]["batch_size_mult"] <= len(tile_data_list)\
                    or tile_i == len(tile_iterator) - 1:
                # Concat tensors of tile_data_list
                accumulated_tile_data = {}
                for key in tile_data_list[0].keys():
                    if isinstance(tile_data_list[0][key], list):
                        accumulated_tile_data[key] = [item for _tile_data in tile_data_list for item in _tile_data[key]]
                    elif isinstance(tile_data_list[0][key], torch.Tensor):
                        accumulated_tile_data[key] = torch.cat([_tile_data[key] for _tile_data in tile_data_list], dim=0)
                    else:
                        raise TypeError(f"Type {type(tile_data_list[0][key])} is not handled!")
                tile_data_list = []  # Empty tile_data_list
            else:
                # tile_data_list is not full yet, continue running inference...
                continue

            # --- Polygonize
            if compute_polygonization:
                crossfield = accumulated_tile_data["crossfield"] if "crossfield" in accumulated_tile_data else None
                accumulated_tile_data["polygons"], accumulated_tile_data["polygon_probs"] = polygonize.polygonize(
                    self.config["polygonize_params"], accumulated_tile_data["seg"],
                    crossfield_batch=crossfield,
                    pool=pool)

            # --- Save output
            if self.config["eval_params"]["save_individual_outputs"]["seg_mask"] or \
                    self.config["eval_params"]["save_aggregated_outputs"]["seg_coco"]:
                # Take seg_interior:
                seg_pred_mask = self.config["eval_params"]["seg_threshold"] < accumulated_tile_data["seg"][:, 0, ...]
                accumulated_tile_data["seg_mask"] = seg_pred_mask

            accumulated_tile_data = local_utils.batch_to_cpu(accumulated_tile_data)
            sample_list = local_utils.split_batch(accumulated_tile_data)

            # Save individual outputs:
            if save_individual_outputs:
                for sample in sample_list:
                    saver_async.add_work(sample)

            # Store aggregated outputs:
            if save_aggregated_outputs:
                self.shared_dict["name_list"].extend(accumulated_tile_data["name"])
                if self.config["eval_params"]["save_aggregated_outputs"]["stats"]:
                    y_pred = accumulated_tile_data["seg"][:, 0, ...].cpu()
                    if "gt_mask" in accumulated_tile_data:
                        y_true = accumulated_tile_data["gt_mask"][:, 0, ...]
                    elif "gt_polygons_image" in accumulated_tile_data:
                        y_true = accumulated_tile_data["gt_polygons_image"][:, 0, ...]
                    else:
                        raise ValueError("Either gt_mask or gt_polygons_image should be in accumulated_tile_data")
                    iou = measures.iou(y_pred.reshape(y_pred.shape[0], -1), y_true.reshape(y_true.shape[0], -1),
                                       threshold=self.config["eval_params"]["seg_threshold"])
                    self.shared_dict["iou_list"].extend(iou.cpu().numpy())
                if self.config["eval_params"]["save_aggregated_outputs"]["seg_coco"]:
                    for sample in sample_list:
                        annotations = save_utils.seg_coco(sample)
                        self.shared_dict["seg_coco_list"].extend(annotations)
                if self.config["eval_params"]["save_aggregated_outputs"]["poly_coco"]:
                    for sample in sample_list:
                        annotations = save_utils.poly_coco(sample["polygons"], sample["polygon_probs"], sample["image_id"].item())
                        self.shared_dict["poly_coco_list"].append(annotations)  # annotations could be a dict, or a list
        # END of loop over samples

        # Save aggregated results
        if save_aggregated_outputs:
            self.barrier.wait()  # Wait on all processes so that shared_dict is synchronized.
            if self.gpu == 0:
                if self.config["eval_params"]["save_aggregated_outputs"]["stats"]:
                    print("Start saving stats:")
                    # Save sample_stats in CSV:
                    t1 = time.time()
                    stats_filepath = os.path.join(self.eval_dirpath, "{}.stats.csv".format(split_name))
                    stats_file = open(stats_filepath, "w")
                    fnames = ["name", "iou"]
                    writer = csv.DictWriter(stats_file, fieldnames=fnames)
                    writer.writeheader()
                    for name, iou in sorted(zip(self.shared_dict["name_list"], self.shared_dict["iou_list"]), key=lambda pair: pair[0]):
                        writer.writerow({
                            "name": name,
                            "iou": iou
                        })
                    stats_file.close()
                    print(f"Finished in {time.time() - t1:02}s")

                if self.config["eval_params"]["save_aggregated_outputs"]["seg_coco"]:
                    print("Start saving seg_coco:")
                    t1 = time.time()
                    seg_coco_filepath = os.path.join(self.eval_dirpath, "{}.annotation.seg.json".format(split_name))
                    python_utils.save_json(seg_coco_filepath, list(self.shared_dict["seg_coco_list"]))
                    print(f"Finished in {time.time() - t1:02}s")

                if self.config["eval_params"]["save_aggregated_outputs"]["poly_coco"]:
                    print("Start saving poly_coco:")
                    poly_coco_base_filepath = os.path.join(self.eval_dirpath, f"{split_name}.annotation.poly")
                    t1 = time.time()
                    save_utils.save_poly_coco(self.shared_dict["poly_coco_list"], poly_coco_base_filepath)
                    print(f"Finished in {time.time() - t1:02}s")

        # Sync point of individual outputs
        if save_individual_outputs:
            print_utils.print_info(f"GPU {self.gpu} -> INFO: Finishing saving individual outputs.")
            saver_async.join()
            self.barrier.wait()  # Wait on all processes so that all saver_asyncs are finished

    def load_checkpoint(self):
        """
        Loads best val checkpoint in checkpoints_dirpath
        """
        filepaths = python_utils.get_filepaths(self.checkpoints_dirpath, startswith_str="checkpoint.best_val.",
                                               endswith_str=".tar")
        if len(filepaths):
            filepaths = sorted(filepaths)
            filepath = filepaths[-1]  # Last best val checkpoint filepath in case there is more than one
            if self.gpu == 0:
                print_utils.print_info("Loading best val checkpoint: {}".format(filepath))
        else:
            # No best val checkpoint fount: find last checkpoint:
            filepaths = python_utils.get_filepaths(self.checkpoints_dirpath, endswith_str=".tar",
                                                   startswith_str="checkpoint.")
            if len(filepaths) == 0:
                raise FileNotFoundError("No checkpoint could be found at that location.")
            filepaths = sorted(filepaths)
            filepath = filepaths[-1]  # Last checkpoint
            if self.gpu == 0:
                print_utils.print_info("Loading last checkpoint: {}".format(filepath))
        # map_location is used to load on current device:
        checkpoint = torch.load(filepath, map_location="cuda:{}".format(self.gpu))

        self.model.module.load_state_dict(checkpoint['model_state_dict'])