File size: 20,959 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import os
import torch_lydorn.torchvision
from tqdm import tqdm
import torch
import torch.distributed
import warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
from torch.utils.tensorboard import SummaryWriter
# from pytorch_memlab import profile, profile_every
from . import measures, plot_utils
from . import local_utils
from lydorn_utils import run_utils
from lydorn_utils import python_utils
from lydorn_utils import math_utils
try:
from apex import amp
APEX_AVAILABLE = True
except ModuleNotFoundError:
APEX_AVAILABLE = False
def humanbytes(B):
'Return the given bytes as a human friendly KB, MB, GB, or TB string'
B = float(B)
KB = float(1024)
MB = float(KB ** 2) # 1,048,576
GB = float(KB ** 3) # 1,073,741,824
TB = float(KB ** 4) # 1,099,511,627,776
if B < KB:
return '{0} {1}'.format(B, 'Bytes' if 0 == B > 1 else 'Byte')
elif KB <= B < MB:
return '{0:.2f} KB'.format(B / KB)
elif MB <= B < GB:
return '{0:.2f} MB'.format(B / MB)
elif GB <= B < TB:
return '{0:.2f} GB'.format(B / GB)
elif TB <= B:
return '{0:.2f} TB'.format(B / TB)
class Trainer:
def __init__(self, rank, gpu, config, model, optimizer, loss_func,
run_dirpath, init_checkpoints_dirpath=None, lr_scheduler=None):
self.rank = rank
self.gpu = gpu
self.config = config
self.model = model
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.loss_func = loss_func
self.init_checkpoints_dirpath = init_checkpoints_dirpath
logs_dirpath = run_utils.setup_run_subdir(run_dirpath, config["optim_params"]["logs_dirname"])
self.checkpoints_dirpath = run_utils.setup_run_subdir(run_dirpath, config["optim_params"]["checkpoints_dirname"])
if self.rank == 0:
self.logs_dirpath = logs_dirpath
train_logs_dirpath = os.path.join(self.logs_dirpath, "train")
val_logs_dirpath = os.path.join(self.logs_dirpath, "val")
self.train_writer = SummaryWriter(train_logs_dirpath)
self.val_writer = SummaryWriter(val_logs_dirpath)
else:
self.logs_dirpath = self.train_writer = self.val_writer = None
def log_weights(self, module, module_name, step):
weight_list = module.parameters()
for i, weight in enumerate(weight_list):
if len(weight.shape) == 4:
weight_type = "4d"
elif len(weight.shape) == 1:
weight_type = "1d"
elif len(weight.shape) == 2:
weight_type = "2d"
else:
weight_type = ""
self.train_writer.add_histogram('{}/{}/{}/hist'.format(module_name, i, weight_type), weight, step)
# self.writer.add_scalar('{}/{}/mean'.format(module_name, i), mean, step)
# self.writer.add_scalar('{}/{}/max'.format(module_name, i), maxi, step)
# def log_pr_curve(self, name, pred, batch, iter_step):
# num_thresholds = 100
# thresholds = torch.linspace(0, 2 * self.config["max_disp_global"] + self.config["max_disp_poly"], steps=num_thresholds)
# dists = measures.pos_dists(pred, batch).cpu()
# tiled_dists = dists.repeat(num_thresholds, 1)
# tiled_thresholds = thresholds.repeat(dists.shape[0], 1).t()
# true_positives = tiled_dists < tiled_thresholds
# true_positive_counts = torch.sum(true_positives, dim=1)
# recall = true_positive_counts.float() / true_positives.shape[1]
#
# precision = 1 - thresholds / (2 * self.config["max_disp_global"] + self.config["max_disp_poly"])
#
# false_positive_counts = true_positives.shape[1] - true_positive_counts
# true_negative_counts = torch.zeros(num_thresholds)
# false_negative_counts = torch.zeros(num_thresholds)
# self.writer.add_pr_curve_raw(name, true_positive_counts,
# false_positive_counts,
# true_negative_counts,
# false_negative_counts,
# precision,
# recall,
# global_step=iter_step,
# num_thresholds=num_thresholds)
def sync_outputs(self, loss, individual_metrics_dict):
# Reduce to rank 0:
torch.distributed.reduce(loss, dst=0)
for key in individual_metrics_dict.keys():
torch.distributed.reduce(individual_metrics_dict[key], dst=0)
# Average on rank 0:
if self.rank == 0:
loss /= self.config["world_size"]
for key in individual_metrics_dict.keys():
individual_metrics_dict[key] /= self.config["world_size"]
# from pytorch_memlab import profile
# @profile
def loss_batch(self, batch, opt=None, epoch=None):
# print("Forward pass:")
# t0 = time.time()
pred, batch = self.model(batch)
# print(f"{time.time() - t0}s")
# print("Loss computation:")
# t0 = time.time()
loss, individual_metrics_dict, extra_dict = self.loss_func(pred, batch, epoch=epoch)
# print(f"{time.time() - t0}s")
# Compute IoUs at different thresholds
if "seg" in pred:
y_pred = pred["seg"][:, 0, ...]
y_true = batch["gt_polygons_image"][:, 0, ...]
iou_thresholds = [0.1, 0.25, 0.5, 0.75, 0.9]
for iou_threshold in iou_thresholds:
iou = measures.iou(y_pred.reshape(y_pred.shape[0], -1), y_true.reshape(y_true.shape[0], -1), threshold=iou_threshold)
mean_iou = torch.mean(iou)
individual_metrics_dict[f"IoU_{iou_threshold}"] = mean_iou
# print("Backward pass:")
# t0 = time.time()
if opt is not None:
# Detect if loss is nan
# contains_nan = bool(torch.sum(torch.isnan(loss)).item())
# if contains_nan:
# raise ValueError("NaN values detected, aborting...")
if self.config["use_amp"] and APEX_AVAILABLE:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
# torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
# all_grads = []
# for param in self.model.parameters():
# # print("shape: {}".format(param.shape))
# if param.grad is not None:
# all_grads.append(param.grad.view(-1))
# all_grads = torch.cat(all_grads)
# all_grads_abs = torch.abs(all_grads)
opt.step()
opt.zero_grad()
# print(f"{time.time() - t0}s")
# Synchronize losses/accuracies to GPU 0 so that they can be logged
self.sync_outputs(loss, individual_metrics_dict)
for key in individual_metrics_dict:
individual_metrics_dict[key] = individual_metrics_dict[key].item()
# Log IoU if exists
log_iou = None
iou_name = f"IoU_{0.5}" # Progress bars will show that IoU and it will be saved in checkpoints
if iou_name in individual_metrics_dict:
log_iou = individual_metrics_dict[iou_name]
return pred, batch, loss.item(), individual_metrics_dict, extra_dict, log_iou, batch["image"].shape[0]
def run_epoch(self, split_name, dl, epoch, log_steps=None, opt=None, iter_step=None):
assert split_name in ["train", "val"]
if split_name == "train":
writer = self.train_writer
elif split_name == "val":
writer = self.val_writer
assert iter_step is not None
else:
writer = None
running_loss_meter = math_utils.AverageMeter("running_loss")
running_losses_meter_dict = {loss_func.name: math_utils.AverageMeter(loss_func.name) for loss_func in
self.loss_func.loss_funcs}
total_running_loss_meter = math_utils.AverageMeter("total_running_loss")
running_iou_meter = math_utils.AverageMeter("running_iou")
total_running_iou_meter = math_utils.AverageMeter("total_running_iou")
# batch_index_offset = 0
epoch_iterator = dl
if self.gpu == 0:
epoch_iterator = tqdm(epoch_iterator, desc="{}: ".format(split_name), leave=False)
for i, batch in enumerate(epoch_iterator):
# Send batch to device
batch = local_utils.batch_to_cuda(batch)
# with torch.autograd.detect_anomaly(): # TODO: comment when not debugging
pred, batch, total_loss, metrics_dict, loss_extra_dict, log_iou, nums = self.loss_batch(batch, opt=opt, epoch=epoch)
# with torch.autograd.profiler.profile(use_cuda=True) as prof:
# loss, nums = self.loss_batch(batch, opt=opt)
# print(prof.key_averages().table(sort_by="cuda_time_total"))
running_loss_meter.update(total_loss, nums)
for name, loss in metrics_dict.items():
if name not in running_losses_meter_dict: # Init
running_losses_meter_dict[name] = math_utils.AverageMeter(name)
running_losses_meter_dict[name].update(loss, nums)
total_running_loss_meter.update(total_loss, nums)
if log_iou is not None:
running_iou_meter.update(log_iou, nums)
total_running_iou_meter.update(log_iou, nums)
# Log values
# batch_index = i + batch_index_offset
if split_name == "train":
iter_step = epoch * len(epoch_iterator) + i
if split_name == "train" and (iter_step % log_steps == 0) or \
split_name == "val" and i == (len(epoch_iterator) - 1):
# if iter_step % log_steps == 0:
if self.gpu == 0:
epoch_iterator.set_postfix(loss="{:.4f}".format(running_loss_meter.get_avg()),
iou="{:.4f}".format(running_iou_meter.get_avg()))
# Logs
if self.rank == 0:
writer.add_scalar("Metrics/Loss", running_loss_meter.get_avg(), iter_step)
for key, meter in running_losses_meter_dict.items():
writer.add_scalar(f"Metrics/{key}", meter.get_avg(), iter_step)
image_display = torch_lydorn.torchvision.transforms.functional.batch_denormalize(batch["image"],
batch[
"image_mean"],
batch["image_std"])
# # Save image overlaid with gt_seg to tensorboard:
# image_gt_seg_display = plot_utils.get_tensorboard_image_seg_display(image_display, batch["gt_polygons_image"])
# writer.add_images('gt_seg', image_gt_seg_display, iter_step)
# Save image overlaid with seg to tensorboard:
if "seg" in pred:
crossfield = pred["crossfield"] if "crossfield" in pred else None
image_seg_display = plot_utils.get_tensorboard_image_seg_display(image_display, pred["seg"], crossfield=crossfield)
writer.add_images('seg', image_seg_display, iter_step)
# self.log_pr_curve("PR curve/{}".format(name), pred, batch, iter_step)
# self.log_weights(self.model.module.backbone, "backbone", iter_step)
# if hasattr(self.model.module, "seg_module"):
# self.log_weights(self.model.module.seg_module, "seg_module", iter_step)
# if hasattr(self.model.module, "crossfield_module"):
# self.log_weights(self.model.module.crossfield_module, "crossfield_module", iter_step)
# self.writer.flush()
# im = batch["image"][0]
# self.writer.add_image('image', im)
running_loss_meter.reset()
for key, meter in running_losses_meter_dict.items():
meter.reset()
running_iou_meter.reset()
return total_running_loss_meter.get_avg(), total_running_iou_meter.get_avg(), iter_step
def compute_loss_norms(self, dl, total_batches):
self.loss_func.reset_norm()
t = None
if self.gpu == 0:
t = tqdm(total=total_batches, desc="Init loss norms", leave=True) # Initialise
batch_i = 0
while batch_i < total_batches:
for batch in dl:
# Update loss norms
batch = local_utils.batch_to_cuda(batch)
pred, batch = self.model(batch)
self.loss_func.update_norm(pred, batch, batch["image"].shape[0])
if t is not None:
t.update(1)
batch_i += 1
if not batch_i < total_batches:
break
# Now sync loss norms across GPUs:
self.loss_func.sync(self.config["world_size"])
def fit(self, train_dl, val_dl=None, init_dl=None):
# Try loading previous model
checkpoint = self.load_checkpoint(self.checkpoints_dirpath) # Try last checkpoint
if checkpoint is None and self.init_checkpoints_dirpath is not None:
# Try with init_checkpoints_dirpath:
checkpoint = self.load_checkpoint(self.init_checkpoints_dirpath)
checkpoint["epoch"] = 0 # Re-start from 0
if checkpoint is None:
checkpoint = {
"epoch": 0,
}
if init_dl is not None:
# --- Compute norms of losses on several epochs:
self.model.train() # Important for batchnorm and dropout, even in computing loss norms
with torch.no_grad():
loss_norm_batches_min = self.config["loss_params"]["multiloss"]["normalization_params"]["min_samples"] // (2 * self.config["optim_params"]["batch_size"]) + 1
loss_norm_batches_max = self.config["loss_params"]["multiloss"]["normalization_params"]["max_samples"] // (2 * self.config["optim_params"]["batch_size"]) + 1
loss_norm_batches = max(loss_norm_batches_min, min(loss_norm_batches_max, len(init_dl)))
self.compute_loss_norms(init_dl, loss_norm_batches)
if self.gpu == 0:
# Prints loss norms:
print(self.loss_func)
start_epoch = checkpoint["epoch"] # Start at next epoch
fit_iterator = range(start_epoch, self.config["optim_params"]["max_epoch"])
if self.gpu == 0:
fit_iterator = tqdm(fit_iterator, desc="Fitting: ", initial=start_epoch,
total=self.config["optim_params"]["max_epoch"])
train_loss = None
val_loss = None
train_iou = None
epoch = None
for epoch in fit_iterator:
self.model.train()
train_loss, train_iou, iter_step = self.run_epoch("train", train_dl, epoch, self.config["optim_params"]["log_steps"],
opt=self.optimizer)
if val_dl is not None:
self.model.eval()
with torch.no_grad():
val_loss, val_iou, _ = self.run_epoch("val", val_dl, epoch, self.config["optim_params"]["log_steps"], iter_step=iter_step)
else:
val_loss = None
val_iou = None
if val_loss is not None:
self.lr_scheduler.step()
else:
self.lr_scheduler.step()
if self.gpu == 0:
postfix_args = {"t_loss": "{:.4f}".format(train_loss), "t_iou": "{:.4f}".format(train_iou)}
if val_loss is not None:
postfix_args["v_loss"] = "{:.4f}".format(val_loss)
if val_loss is not None:
postfix_args["v_iou"] = "{:.4f}".format(val_iou)
fit_iterator.set_postfix(**postfix_args)
if self.rank == 0:
if (epoch + 1) % self.config["optim_params"]["checkpoint_epoch"] == 0:
self.save_last_checkpoint(epoch + 1, train_loss, val_loss, train_iou,
val_iou) # Save the last completed epoch, hence the "+1"
self.delete_old_checkpoint(epoch + 1)
if val_loss is not None:
self.save_best_val_checkpoint(epoch + 1, train_loss, val_loss, train_iou, val_iou)
if self.rank == 0 and epoch is not None:
self.save_last_checkpoint(epoch + 1, train_loss, val_loss, train_iou,
val_iou) # Save the last completed epoch, hence the "+1"
def load_checkpoint(self, checkpoints_dirpath):
"""
Loads last checkpoint in checkpoints_dirpath
:param checkpoints_dirpath:
:return:
"""
try:
filepaths = python_utils.get_filepaths(checkpoints_dirpath, endswith_str=".tar",
startswith_str="checkpoint.")
if len(filepaths) == 0:
return None
filepaths = sorted(filepaths)
filepath = filepaths[-1] # Last checkpoint
checkpoint = torch.load(filepath, map_location="cuda:{}".format(
self.gpu)) # map_location is used to load on current device
self.model.module.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
self.loss_func.load_state_dict(checkpoint['loss_func_state_dict'])
epoch = checkpoint['epoch']
return {
"epoch": epoch,
}
except NotADirectoryError:
return None
def save_checkpoint(self, filepath, epoch, train_loss, val_loss, train_acc, val_acc):
torch.save({
'epoch': epoch,
'model_state_dict': self.model.module.state_dict(), # model is a DistributedDataParallel module
'optimizer_state_dict': self.optimizer.state_dict(),
'lr_scheduler_state_dict': self.lr_scheduler.state_dict(),
'loss_func_state_dict': self.loss_func.state_dict(),
'train_loss': train_loss,
'val_loss': val_loss,
'train_acc': train_acc,
'val_acc': val_acc,
}, filepath)
def save_last_checkpoint(self, epoch, train_loss, val_loss, train_acc, val_acc):
filename_format = "checkpoint.epoch_{:06d}.tar"
filepath = os.path.join(self.checkpoints_dirpath, filename_format.format(epoch))
self.save_checkpoint(filepath, epoch, train_loss, val_loss, train_acc, val_acc)
def delete_old_checkpoint(self, current_epoch):
filename_format = "checkpoint.epoch_{:06d}.tar"
to_delete_epoch = current_epoch - self.config["optim_params"]["checkpoints_to_keep"] * self.config["optim_params"]["checkpoint_epoch"]
filepath = os.path.join(self.checkpoints_dirpath, filename_format.format(to_delete_epoch))
if os.path.exists(filepath):
os.remove(filepath)
def save_best_val_checkpoint(self, epoch, train_loss, val_loss, train_acc, val_acc):
filepath = os.path.join(self.checkpoints_dirpath, "checkpoint.best_val.epoch_{:06d}.tar".format(epoch))
# Search for a prev best val checkpoint:
prev_filepaths = python_utils.get_filepaths(self.checkpoints_dirpath, startswith_str="checkpoint.best_val.",
endswith_str=".tar")
if len(prev_filepaths):
prev_filepaths = sorted(prev_filepaths)
prev_filepath = prev_filepaths[-1] # Last best val checkpoint filepath in case there is more than one
prev_best_val_checkpoint = torch.load(prev_filepath)
prev_best_loss = prev_best_val_checkpoint["val_loss"]
if val_loss < prev_best_loss:
self.save_checkpoint(filepath, epoch, train_loss, val_loss, train_acc, val_acc)
# Delete prev best val
[os.remove(prev_filepath) for prev_filepath in prev_filepaths]
else:
self.save_checkpoint(filepath, epoch, train_loss, val_loss, train_acc, val_acc)
|