File size: 9,069 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
#!/usr/bin/env python3
###################################################################
# Use this script to polygonize binary mask detection in COCO format (for example frome the Open Solution from the CrowdAI challenge:
# https://github.com/neptune-ai/open-solution-mapping-challenge)
# using the frame field polygonization method and save the output in COCO format.
# Example use:
# python polygonize_coco.py --run_dirpath "/home/lydorn/repos/lydorn/Polygonization-by-Frame-Field-Learning/frame_field_learning/runs/mapping_dataset.unet_resnet101_pretrained.train_val | 2020-09-07 11:28:51" --images_dirpath "/home/lydorn/data/mapping_challenge_dataset/raw/val/images" --gt_filepath /home/lydorn/data/mapping_challenge_dataset/raw/val/annotation.json --in_filepath "/home/lydorn/data/mapping_challenge_dataset/eval_runs/mapping_dataset.open_solution | 0000-00-00 00:00:00/test.annotation.seg.json" --out_filepath "/home/lydorn/data/mapping_challenge_dataset/eval_runs/mapping_dataset.open_solution | 0000-00-00 00:00:00/test.annotation.poly.json"
###################################################################
import argparse
from pycocotools.coco import COCO
from pycocotools import mask as cocomask
from pycocotools.cocoeval import COCOeval
import numpy as np
import skimage.io
import matplotlib.pyplot as plt
import pylab
import random
import os
import json
import sys
from tqdm import tqdm
import torch
from frame_field_learning.model import FrameFieldModel
from frame_field_learning import inference, polygonize_acm, data_transforms, save_utils, polygonize_utils
from lydorn_utils import run_utils, print_utils, python_utils
from backbone import get_backbone
import torch_lydorn
pylab.rcParams['figure.figsize'] = (8.0, 10.0)
# Image stats for the open challenge dataset:
image_mean = [0.30483739, 0.35143595, 0.3973895]
image_std = [0.16362707, 0.15187606, 0.14273278]
polygonize_config = {
"steps": 500,
"data_level": 0.5,
"data_coef": 0.1,
"length_coef": 0.4,
"crossfield_coef": 0.5,
"poly_lr": 0.001,
"warmup_iters": 499,
"warmup_factor": 0.1,
"device": "cuda",
"tolerance": 0.125,
"seg_threshold": 0.5,
"min_area": 10
}
def get_args():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'--run_dirpath',
required=True,
type=str,
help='Full path to the run directory to use for frame field prediction (needed for frame field polygonization).')
argparser.add_argument(
'--images_dirpath',
required=True,
type=str,
help='Path to the images directory to use for frame field prediction (needed for frame field polygonization).')
argparser.add_argument(
'--gt_filepath',
required=True,
type=str,
help='Filepath of the ground truth annotations in COCO format (.json file).')
argparser.add_argument(
'--in_filepath',
required=True,
type=str,
help='Filepath of the input mask annotations in COCO format (.json file).')
argparser.add_argument(
'--out_filepath',
required=True,
type=str,
help='Filepath of the output polygon annotations in COCO format (.json file).')
argparser.add_argument(
'--batch_size',
default=16,
type=int,
help='Batch size for running inference on the model.')
argparser.add_argument(
'--batch_size_mult',
default=64,
type=int,
help='Multiply batch_size by this factor for polygonization.')
args = argparser.parse_args()
return args
def list_to_batch(sample_data_list):
tile_data = {}
for key in sample_data_list[0].keys():
if isinstance(sample_data_list[0][key], list):
tile_data[key] = [item for _tile_data in sample_data_list for item in _tile_data[key]]
elif isinstance(sample_data_list[0][key], torch.Tensor):
tile_data[key] = torch.cat([_tile_data[key] for _tile_data in sample_data_list], dim=0)
else:
raise TypeError(f"Type {type(sample_data_list[0][key])} is not handled!")
return tile_data
def run_model(config, model, sample_data_list):
tile_data = list_to_batch(sample_data_list)
tile_data = inference.inference(config, model, tile_data, compute_polygonization=False)
return tile_data
def run_polygonization(sample_data_list):
tile_data = list_to_batch(sample_data_list)
# Polygonize input mask with predicted frame field
seg_batch = tile_data["mask_image"]
crossfield_batch = tile_data["crossfield"]
polygons_batch, _ = polygonize_acm.polygonize(seg_batch, crossfield_batch, polygonize_config)
# Discard the probs computed by polygonize(). They will be computed next using the score_image
# Convert to COCO format
coco_ann_list = []
for polygons, img_id, score_image in zip(polygons_batch, tile_data["img_id"], tile_data["score_image"]):
scores = polygonize_utils.compute_geom_prob(polygons, score_image[0, :, :].numpy())
coco_ann = save_utils.poly_coco(polygons, scores, image_id=img_id)
coco_ann_list.extend(coco_ann)
return coco_ann_list
def polygonize_masks(run_dirpath, images_dirpath, gt_filepath, in_filepath, out_filepath, batch_size, batch_size_mult):
coco_gt = COCO(gt_filepath)
coco_dt = coco_gt.loadRes(in_filepath)
# --- Load model --- #
# Load run's config file:
config = run_utils.load_config(config_dirpath=run_dirpath)
if config is None:
print_utils.print_error(
"ERROR: cannot continue without a config file. Exiting now...")
sys.exit()
config["backbone_params"]["pretrained"] = False # Don't load pretrained model
backbone = get_backbone(config["backbone_params"])
eval_online_cuda_transform = data_transforms.get_eval_online_cuda_transform(config)
model = FrameFieldModel(config, backbone=backbone, eval_transform=eval_online_cuda_transform)
model.to(config["device"])
checkpoints_dirpath = run_utils.setup_run_subdir(run_dirpath,
config["optim_params"]["checkpoints_dirname"])
model = inference.load_checkpoint(model, checkpoints_dirpath, config["device"])
model.eval()
# --- Polygonize input COCO mask detections --- #
img_ids = coco_dt.getImgIds()
# img_ids = sorted(img_ids)[:1] # TODO: rm limit
output_annotations = []
model_data_list = [] # Used to accumulate inputs and run model inference on it.
poly_data_list = [] # Used to accumulate inputs and run polygonization on it.
for img_id in tqdm(img_ids, desc="Polygonizing"):
# Load image
img = coco_gt.loadImgs(img_id)[0]
image = skimage.io.imread(os.path.join(images_dirpath, img["file_name"]))
# Draw mask from input COCO mask annotations
mask_image = np.zeros((img["height"], img["width"]))
score_image = np.zeros((img["height"], img["width"]))
dts = coco_dt.loadAnns(coco_dt.getAnnIds(imgIds=img_id))
for dt in dts:
dt_mask = cocomask.decode(dt["segmentation"])
mask_image = np.maximum(mask_image, dt_mask)
score_image = np.maximum(score_image, dt_mask * dt["score"])
# Accumulate inputs into the current batch
sample_data = {
"img_id": [img_id],
"mask_image": torch_lydorn.torchvision.transforms.functional.to_tensor(mask_image)[None, ...].float(),
"score_image": torch_lydorn.torchvision.transforms.functional.to_tensor(score_image)[None, ...].float(),
"image": torch_lydorn.torchvision.transforms.functional.to_tensor(image)[None, ...],
"image_mean": torch.tensor(image_mean)[None, ...],
"image_std": torch.tensor(image_std)[None, ...]
}
# Accumulate batch for running the model
model_data_list.append(sample_data)
if len(model_data_list) == batch_size:
# Run model
tile_data = run_model(config, model, model_data_list)
model_data_list = [] # Empty model batch
# Accumulate batch for running the polygonization
poly_data_list.append(tile_data)
if len(poly_data_list) == batch_size_mult:
coco_ann = run_polygonization(poly_data_list)
output_annotations.extend(coco_ann)
poly_data_list = []
# Finish with incomplete batches
if len(model_data_list):
tile_data = run_model(config, model, model_data_list)
poly_data_list.append(tile_data)
if len(poly_data_list):
coco_ann = run_polygonization(poly_data_list)
output_annotations.extend(coco_ann)
print("Saving output...")
with open(out_filepath, 'w') as outfile:
json.dump(output_annotations, outfile)
if __name__ == "__main__":
args = get_args()
polygonize_masks(args.run_dirpath, args.images_dirpath, args.gt_filepath, args.in_filepath, args.out_filepath, args.batch_size, args.batch_size_mult)
|