File size: 16,356 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import numpy as np
import time
import sklearn.datasets
import skimage.transform
import scipy.stats
from . import python_utils
from . import image_utils
# if python_utils.module_exists("matplotlib.pyplot"):
# import matplotlib.pyplot as plt
CV2 = False
if python_utils.module_exists("cv2"):
import cv2
CV2 = True
# import multiprocessing
#
# import python_utils
#
# if python_utils.module_exists("joblib"):
# from joblib import Parallel, delayed
# JOBLIB = True
# else:
# JOBLIB = False
# def plot_field_map(field_map):
# from mpl_toolkits.mplot3d import Axes3D
#
# row = np.linspace(0, 1, field_map.shape[0])
# col = np.linspace(0, 1, field_map.shape[1])
# rr, cc = np.meshgrid(row, col, indexing='ij')
#
# fig = plt.figure(figsize=(18, 9))
# ax = fig.add_subplot(121, projection='3d')
# ax.plot_surface(rr, cc, field_map[:, :, 0], rstride=3, cstride=3, linewidth=1, antialiased=True)
#
# ax = fig.add_subplot(122, projection='3d')
# ax.plot_surface(rr, cc, field_map[:, :, 1], rstride=3, cstride=3, linewidth=1, antialiased=True)
#
# plt.show()
# --- Classes --- #
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name="", init_val=0, fmt=':f'):
self.name = name
self.init_val = init_val
self.fmt = fmt
self.val = self.avg = self.init_val
self.sum = self.count = 0
def reset(self):
self.val = self.avg = self.init_val
self.sum = self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_avg(self):
return self.avg
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class RunningDecayingAverage(object):
"""
Updates average with val*(1 - decay) + avg*decay
"""
def __init__(self, decay, init_val=0):
assert 0 < decay < 1
self.decay = decay
self.init_val = init_val
self.val = self.avg = self.init_val
def reset(self):
self.val = self.avg = self.init_val
def update(self, val):
self.val = val
self.avg = (1 - self.decay)*val + self.decay*self.avg
def get_avg(self):
return self.avg
class DispFieldMapsPatchCreator:
def __init__(self, global_shape, patch_res, map_count, modes, gauss_mu_range, gauss_sig_scaling):
self.global_shape = global_shape
self.patch_res = patch_res
self.map_count = map_count
self.modes = modes
self.gauss_mu_range = gauss_mu_range
self.gauss_sig_scaling = gauss_sig_scaling
self.current_patch_index = -1
self.patch_boundingboxes = image_utils.compute_patch_boundingboxes(self.global_shape, stride=self.patch_res,
patch_res=self.patch_res)
self.disp_maps = None
self.create_new_disp_maps()
def create_new_disp_maps(self):
print("DispFieldMapsPatchCreator.create_new_disp_maps()")
self.disp_maps = create_displacement_field_maps(self.global_shape, self.map_count, self.modes,
self.gauss_mu_range, self.gauss_sig_scaling)
def get_patch(self):
self.current_patch_index += 1
if len(self.patch_boundingboxes) <= self.current_patch_index:
self.current_patch_index = 0
self.create_new_disp_maps()
patch_boundingbox = self.patch_boundingboxes[self.current_patch_index]
patch_disp_maps = self.disp_maps[:, patch_boundingbox[0]:patch_boundingbox[2],
patch_boundingbox[1]:patch_boundingbox[3], :]
return patch_disp_maps
# --- --- #
def compute_crossfield_c0c2(u, v):
c0 = np.power(u, 2) * np.power(v, 2)
c2 = - (np.power(u, 2) + np.power(v, 2))
crossfield = np.stack([c0.real, c0.imag, c2.real, c2.imag], axis=-1)
return crossfield
def compute_crossfield_uv(c0c2):
c0 = c0c2[..., 0] + 1j * c0c2[..., 1]
c2 = c0c2[..., 2] + 1j * c0c2[..., 3]
sqrt_c2_squared_minus_4c0 = np.sqrt(np.power(c2, 2) - 4 * c0)
u_squared = (c2 + sqrt_c2_squared_minus_4c0) / 2
v_squared = (c2 - sqrt_c2_squared_minus_4c0) / 2
u = np.sqrt(u_squared)
v = np.sqrt(v_squared)
return u, v
def to_homogeneous(array):
new_array = np.ones((array.shape[0], array.shape[1] + 1), dtype=array.dtype)
new_array[..., :-1] = array
return new_array
def to_euclidian(array_homogeneous):
array = array_homogeneous[:, 0:2] / array_homogeneous[:, 2:3]
return array
def stretch(array):
mini = np.min(array)
maxi = np.max(array)
if maxi - mini:
array -= mini
array *= 2 / (maxi - mini)
array -= 1
return array
def crop_center(array, out_shape):
assert len(out_shape) == 2, "out_shape should be of length 2"
in_shape = np.array(array.shape[:2])
start = in_shape // 2 - (out_shape // 2)
out_array = array[start[0]:start[0] + out_shape[0], start[1]:start[1] + out_shape[1], ...]
return out_array
def multivariate_gaussian(pos, mu, sigma):
"""Return the multivariate Gaussian distribution on array pos.
pos is an array constructed by packing the meshed arrays of variables
x_1, x_2, x_3, ..., x_k into its _last_ dimension.
"""
n = mu.shape[0]
sigma_det = np.linalg.det(sigma)
sigma_inv = np.linalg.inv(sigma)
N = np.sqrt((2 * np.pi) ** n * sigma_det)
# This einsum call calculates (x-mu)T.sigma-1.(x-mu) in a vectorized
# way across all the input variables.
# print("\tStarting to create multivariate Gaussian")
# start = time.time()
# print((pos - mu).shape)
# print(sigma_inv.shape)
try:
fac = np.einsum('...k,kl,...l->...', pos - mu, sigma_inv, pos - mu, optimize=True)
except:
fac = np.einsum('...k,kl,...l->...', pos - mu, sigma_inv, pos - mu)
# print(fac.shape)
# end = time.time()
# print("\tFinished Gaussian in {}s".format(end - start))
return np.exp(-fac / 2) / N
def create_multivariate_gaussian_mixture_map(shape, mode_count, mu_range, sig_scaling):
shape = np.array(shape)
# print("Starting to create multivariate Gaussian mixture")
# main_start = time.time()
dim_count = 2
downsample_factor = 4
dtype = np.float32
mu_scale = mu_range[1] - mu_range[0]
row = np.linspace(mu_range[0], mu_range[1], mu_scale * shape[0] / downsample_factor, dtype=dtype)
col = np.linspace(mu_range[0], mu_range[1], mu_scale * shape[1] / downsample_factor, dtype=dtype)
rr, cc = np.meshgrid(row, col, indexing='ij')
grid = np.stack([rr, cc], axis=2)
mus = np.random.uniform(mu_range[0], mu_range[1], (mode_count, dim_count, 2)).astype(dtype)
# gams = np.random.rand(mode_count, dim_count, 2, 2).astype(dtype)
signs = np.random.choice([1, -1], size=(mode_count, dim_count))
# print("\tAdding gaussian mixtures one by one")
# start = time.time()
# if JOBLIB:
# # Parallel computing of multivariate gaussians
# inputs = range(8)
#
# def processInput(i):
# size = 10 * i + 2000
# a = np.random.random_sample((size, size))
# b = np.random.random_sample((size, size))
# n = np.dot(a, b)
# return n
#
# num_cores = multiprocessing.cpu_count()
# print("num_cores: {}".format(num_cores))
# # num_cores = 1
#
# results = Parallel(n_jobs=num_cores)(delayed(processInput)(i) for i in inputs)
# for result in results:
# print(result.shape)
#
# gaussian_mixture = np.zeros_like(grid)
# else:
gaussian_mixture = np.zeros_like(grid)
for mode_index in range(mode_count):
for dim in range(dim_count):
sig = (sig_scaling[1] - sig_scaling[0]) * sklearn.datasets.make_spd_matrix(2) + sig_scaling[0]
# sig = (sig_scaling[1] - sig_scaling[0]) * np.dot(gams[mode_index, dim], np.transpose(gams[mode_index, dim])) + sig_scaling[0]
sig = sig.astype(dtype)
multivariate_gaussian_grid = signs[mode_index, dim] * multivariate_gaussian(grid, mus[mode_index, dim], sig)
gaussian_mixture[:, :, dim] += multivariate_gaussian_grid
# end = time.time()
# print("\tFinished adding gaussian mixtures in {}s".format(end - start))
# squared_gaussian_mixture = np.square(gaussian_mixture)
# magnitude_disp_field_map = np.sqrt(squared_gaussian_mixture[:, :, 0] + squared_gaussian_mixture[:, :, 1])
# max_magnitude = magnitude_disp_field_map.max()
gaussian_mixture[:, :, 0] = stretch(gaussian_mixture[:, :, 0])
gaussian_mixture[:, :, 1] = stretch(gaussian_mixture[:, :, 1])
# Crop
gaussian_mixture = crop_center(gaussian_mixture, shape // downsample_factor)
# plot_field_map(gaussian_mixture)
# Upsample mixture
# gaussian_mixture = skimage.transform.rescale(gaussian_mixture, downsample_factor)
gaussian_mixture = skimage.transform.resize(gaussian_mixture, shape)
main_end = time.time()
# print("Finished multivariate Gaussian mixture in {}s".format(main_end - main_start))
return gaussian_mixture
def create_displacement_field_maps(shape, map_count, modes, gauss_mu_range, gauss_sig_scaling, seed=None):
if seed is not None:
np.random.seed(seed)
disp_field_maps_list = []
for disp_field_map_index in range(map_count):
disp_field_map_normed = create_multivariate_gaussian_mixture_map(shape,
modes,
gauss_mu_range,
gauss_sig_scaling)
disp_field_maps_list.append(disp_field_map_normed)
disp_field_maps = np.stack(disp_field_maps_list, axis=0)
return disp_field_maps
def get_h_mat(t, theta, scale_offset, shear, p):
"""
Computes the homography matrix given the parameters
See https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
(fixed mistake in H_a)
:param t: 2D translation vector
:param theta: Scalar angle
:param scale_offset: 2D scaling vector
:param shear: 2D shearing vector
:param p: 2D projection vector
:return: h_mat: shape (3, 3)
"""
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
h_e = np.array([
[cos_theta, -sin_theta, t[0]],
[sin_theta, cos_theta, t[1]],
[0, 0, 1],
])
h_a = np.array([
[1 + scale_offset[0], shear[1], 0],
[shear[0], 1 + scale_offset[1], 0],
[0, 0, 1],
])
h_p = np.array([
[1, 0, 0],
[0, 1, 0],
[p[0], p[1], 1],
])
h_mat = h_e @ h_a @ h_p
return h_mat
if CV2:
def find_homography_4pt(src, dst):
"""
Estimates the homography that transforms src points into dst points.
Then converts the matrix representation into the 4 points representation.
:param src:
:param dst:
:return:
"""
h_mat, _ = cv2.findHomography(src, dst)
h_4pt = convert_h_mat_to_4pt(h_mat)
return h_4pt
def convert_h_mat_to_4pt(h_mat):
src_4pt = np.array([[
[-1, -1],
[1, -1],
[1, 1],
[-1, 1],
]], dtype=np.float64)
h_4pt = cv2.perspectiveTransform(src_4pt, h_mat)
return h_4pt
def convert_h_4pt_to_mat(h_4pt):
src_4pt = np.array([
[-1, -1],
[1, -1],
[1, 1],
[-1, 1],
], dtype=np.float32)
h_4pt = h_4pt.astype(np.float32)
h_mat = cv2.getPerspectiveTransform(src_4pt, h_4pt)
return h_mat
def field_map_to_image(field_map):
mag, ang = cv2.cartToPolar(field_map[..., 0], field_map[..., 1])
hsv = np.zeros((field_map.shape[0], field_map.shape[1], 3))
hsv[..., 0] = ang * 180 / np.pi / 2
hsv[..., 1] = 255
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
hsv = hsv.astype(np.uint8)
rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return rgb
else:
def find_homography_4pt(src, dst):
print("cv2 is not available, the find_homography_4pt(src, dst) function cannot work!")
def convert_h_mat_to_4pt(h_mat):
print("cv2 is not available, the convert_h_mat_to_4pt(h_mat) function cannot work!")
def convert_h_4pt_to_mat(h_4pt):
print("cv2 is not available, the convert_h_4pt_to_mat(h_4pt) function cannot work!")
def field_map_to_image(field_map):
print("cv2 is not available, the field_map_to_image(field_map) function cannot work!")
def circular_diff(a1, a2, range_max):
"""
Compute difference between a1 and a2 belonging to the circular interval [0, range_max).
For example to compute angle difference, use range_max=2*PI.
a1 and a2 must be between range_min and range_max!
Thus difference between 0 and range_max is 0.
:param a1: numpy array
:param a2: numpy array
:param range_max:
:return:
"""
d = range_max / 2 - np.abs(np.abs(a1 - a2) - range_max / 2)
return d
def invert_permutation(p):
'''The argument p is assumed to be some permutation of 0, 1, ..., len(p)-1.
Returns an array s, where s[i] gives the index of i in p.
'''
s = np.empty(p.size, p.dtype)
s[p] = np.arange(p.size)
return s
def region_growing_1d(array, max_range, max_skew):
"""
:param array:
:param max_var:
:param max_mean_median_diff:
:return:
"""
def verify_predicate(region):
"""
Region is sorted
:param region:
:return:
"""
skew = scipy.stats.skew(region)
return region[-1] - region[0] < max_range and abs(skew) < max_skew
assert len(array.shape) == 1, "array should be 1d, not {}".format(array.shape)
p = np.argsort(array)
sorted_array = array[p]
labels = np.zeros(len(sorted_array), dtype=np.long)
region_start = 0
region_label = 1
labels[region_start] = region_label
centers = []
for i in range(1, len(sorted_array)):
region = sorted_array[region_start:i + 1]
if not verify_predicate(region):
# End current region
median = region[len(region) // 2] # region is sorted
centers.append(median)
# Begin a new region
region_start = i
region_label += 1
labels[i] = region_label
centers.append(median)
return labels[invert_permutation(p)], centers
def bilinear_interpolate(im, pos):
# From https://gist.github.com/peteflorence/a1da2c759ca1ac2b74af9a83f69ce20e
x = pos[..., 1]
y = pos[..., 0]
x0 = np.floor(x).astype(int)
x1 = x0 + 1
y0 = np.floor(y).astype(int)
y1 = y0 + 1
x0_clipped = np.clip(x0, 0, im.shape[1] - 1)
x1_clipped = np.clip(x1, 0, im.shape[1] - 1)
y0_clipped = np.clip(y0, 0, im.shape[0] - 1)
y1_clipped = np.clip(y1, 0, im.shape[0] - 1)
Ia = im[y0_clipped, x0_clipped]
Ib = im[y1_clipped, x0_clipped]
Ic = im[y0_clipped, x1_clipped]
Id = im[y1_clipped, x1_clipped]
wa = (x1 - x) * (y1 - y)
wb = (x1 - x) * (y - y0)
wc = (x - x0) * (y1 - y)
wd = (x - x0) * (y - y0)
value = (Ia.T * wa).T + (Ib.T * wb).T + (Ic.T * wc).T + (Id.T * wd).T
return value
def main():
import matplotlib.pyplot as plt
# shape = (220, 220)
# mode_count = 30
# mu_range = [0, 1]
# sig_scaling = [0.0, 0.002]
# create_multivariate_gaussian_mixture_map(shape, mode_count, mu_range, sig_scaling)
# a1 = np.array([0.0])
# a2 = np.array([3*np.pi/4])
# range_max = np.pi
# d = circular_diff(a1, a2, range_max)
# print(d)
array = np.concatenate([np.arange(1, 1.01, 0.001), np.arange(0, np.pi / 2, np.pi / 100)])
print(array)
labels = region_growing_1d(array, max_range=np.pi / 10, max_skew=1)
print(labels)
plt.plot(array, labels, ".")
plt.show()
if __name__ == "__main__":
main()
|