File size: 17,406 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import numpy as np
import time
import json
import os.path
from tqdm import tqdm
import functools
import rasterio
from osgeo import gdal, ogr
from osgeo import osr
import overpy
from pyproj import Proj, transform, Transformer
import fiona
import fiona.crs
import shapely.geometry
import shapely.ops
from . import polygon_utils
from . import math_utils
from . import print_utils
# --- Params --- #
QUERY_BASE = \
"""
<osm-script timeout="900" element-limit="1073741824">
<union>
<query type="way">
<has-kv k="{0}"/>
<bbox-query s="{1}" w="{2}" n="{3}" e="{4}"/>
</query>
<recurse type="way-node" into="nodes"/>
</union>
<print/>
</osm-script>
"""
WGS84_WKT = """
GEOGCS["GCS_WGS_1984",
DATUM["WGS_1984",
SPHEROID["WGS_84",6378137,298.257223563]],
PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]]
"""
CRS = {'no_defs': True, 'ellps': 'WGS84', 'datum': 'WGS84', 'proj': 'longlat'}
# --- --- #
def get_coor_in_space(image_filepath):
"""
:param image_filepath: Path to geo-referenced tif image
:return: coor in original space and in wsg84 spatial reference and original geotransform
:return: geo transform (x_min, res, 0, y_max, 0, -res)
:return: [[OR_x_min,OR_y_min,OR_x_max,OR_y_max],[TR_x_min,TR_y_min,TR_x_max,TR_y_max]]
"""
# print(" get_coor_in_space(image_filepath)")
ds = gdal.Open(image_filepath)
width = ds.RasterXSize
height = ds.RasterYSize
gt = ds.GetGeoTransform()
x_min = gt[0]
y_min = gt[3] + width * gt[4] + height * gt[5]
x_max = gt[0] + width * gt[1] + height * gt[2]
y_max = gt[3]
prj = ds.GetProjection()
srs = osr.SpatialReference(wkt=prj)
coor_sys = srs.GetAttrValue("PROJCS|AUTHORITY", 1)
if coor_sys is None:
coor_sys = srs.GetAttrValue("GEOGCS|AUTHORITY", 1)
new_cs = osr.SpatialReference()
new_cs.ImportFromWkt(WGS84_WKT)
# print(srs, new_cs)
transform = osr.CoordinateTransformation(srs, new_cs)
lat_long_min = transform.TransformPoint(x_min, y_min)
lat_long_max = transform.TransformPoint(x_max, y_max)
coor = [[x_min, y_min, x_max, y_max], [lat_long_min[0], lat_long_min[1], lat_long_max[0], lat_long_max[1]]]
return coor, gt, coor_sys
def get_osm_data(coor_query):
"""
:param coor_query: [x_min, min_z, x_max, y_max]
:return: OSM query result
"""
api = overpy.Overpass()
query_buildings = QUERY_BASE.format("building", coor_query[1], coor_query[0], coor_query[3], coor_query[2])
query_successful = False
wait_duration = 60
result = None
while not query_successful:
try:
result = api.query(query_buildings)
query_successful = True
except overpy.exception.OverpassGatewayTimeout or overpy.exception.OverpassTooManyRequests or ConnectionResetError:
print("OSM server overload. Waiting for {} seconds before querying again...".format(wait_duration))
time.sleep(wait_duration)
wait_duration *= 2 # Multiply wait time by 2 for the next time
return result
def proj_to_epsg_space(nodes, coor_sys):
original = Proj(CRS)
destination = Proj(init='EPSG:{}'.format(coor_sys))
polygon = []
for node in nodes:
polygon.append(transform(original, destination, node.lon, node.lat))
return np.array(polygon)
def compute_epsg_to_image_mat(coor, gt):
x_min = coor[0][0]
y_max = coor[0][3]
transform_mat = np.array([
[gt[1], 0, 0],
[0, gt[5], 0],
[x_min, y_max, 1],
])
return np.linalg.inv(transform_mat)
def compute_image_to_epsg_mat(coor, gt):
x_min = coor[0][0]
y_max = coor[0][3]
transform_mat = np.array([
[gt[1], 0, 0],
[0, gt[5], 0],
[x_min, y_max, 1],
])
return transform_mat
def apply_transform_mat(polygon_epsg_space, transform_mat):
polygon_epsg_space_homogeneous = math_utils.to_homogeneous(polygon_epsg_space)
polygon_image_space_homogeneous = np.matmul(polygon_epsg_space_homogeneous, transform_mat)
polygon_image_space = math_utils.to_euclidian(polygon_image_space_homogeneous)
return polygon_image_space
def get_polygons_from_osm(image_filepath, tag="", ij_coords=True):
coor, gt, coor_system = get_coor_in_space(image_filepath)
transform_mat = compute_epsg_to_image_mat(coor, gt)
osm_data = get_osm_data(coor[1])
polygons = []
for way in osm_data.ways:
if way.tags.get(tag, "n/a") != 'n/a':
polygon = way.nodes
polygon_epsg_space = proj_to_epsg_space(polygon, coor_system)
polygon_image_space = apply_transform_mat(polygon_epsg_space, transform_mat)
if ij_coords:
polygon_image_space = polygon_utils.swap_coords(polygon_image_space)
polygons.append(polygon_image_space)
return polygons
def get_polygons_from_shapefile(image_filepath, input_shapefile_filepath, progressbar=True):
def process_one_polygon(polygon):
assert len(polygon.shape) == 2, "polygon should have shape (n, d), not {}".format(polygon.shape)
if 2 < polygon.shape[1]:
print_utils.print_warning(
"WARNING: polygon from shapefile has shape {}. Will discard extra values to have polygon with shape ({}, 2)".format(
polygon.shape, polygon.shape[0]))
polygon = polygon[:, :2]
polygon_epsg_space = polygon
polygon_image_space = apply_transform_mat(polygon_epsg_space, transform_mat)
polygon_image_space = polygon_utils.swap_coords(polygon_image_space)
polygons.append(polygon_image_space)
# Extract properties:
if "properties" in parsed_json:
properties = parsed_json["properties"]
properties_list.append(properties)
coor, gt, coor_system = get_coor_in_space(image_filepath)
transform_mat = compute_epsg_to_image_mat(coor, gt)
file = ogr.Open(input_shapefile_filepath)
assert file is not None, "File {} does not exist!".format(input_shapefile_filepath)
shape = file.GetLayer(0)
feature_count = shape.GetFeatureCount()
polygons = []
properties_list = []
if progressbar:
iterator = tqdm(range(feature_count), desc="Reading features", leave=False)
else:
iterator = range(feature_count)
for feature_index in iterator:
feature = shape.GetFeature(feature_index)
raw_json = feature.ExportToJson()
parsed_json = json.loads(raw_json)
# Extract polygon:
geometry = parsed_json["geometry"]
if geometry["type"] == "Polygon":
polygon = np.array(geometry["coordinates"][0]) # TODO: handle polygons with holes (remove [0])
process_one_polygon(polygon)
if geometry["type"] == "MultiPolygon":
for individual_coordinates in geometry["coordinates"]:
process_one_polygon(np.array(individual_coordinates[0])) # TODO: handle polygons with holes (remove [0])
if properties_list:
return polygons, properties_list
else:
return polygons
def create_ogr_polygon(polygon, transform_mat):
polygon_swapped_coords = polygon_utils.swap_coords(polygon)
polygon_epsg = apply_transform_mat(polygon_swapped_coords, transform_mat)
ring = ogr.Geometry(ogr.wkbLinearRing)
for coord in polygon_epsg:
ring.AddPoint(coord[0], coord[1])
# Create polygon
poly = ogr.Geometry(ogr.wkbPolygon)
poly.AddGeometry(ring)
return poly.ExportToWkt()
def create_ogr_polygons(polygons, transform_mat):
ogr_polygons = []
for polygon in polygons:
ogr_polygons.append(create_ogr_polygon(polygon, transform_mat))
return ogr_polygons
def save_image_as_geotiff(save_filepath, image, source_geotiff_filepath):
# Get geo info from source image:
source_ds = gdal.Open(source_geotiff_filepath)
if source_ds is None:
raise FileNotFoundError(f"Could not load source file {source_geotiff_filepath}")
source_gt = source_ds.GetGeoTransform()
source_prj = source_ds.GetProjection()
driver = gdal.GetDriverByName("GTiff")
outdata = driver.Create(save_filepath, image.shape[1], image.shape[0], image.shape[2])
outdata.SetGeoTransform(source_gt) ##sets same geotransform as input
outdata.SetProjection(source_prj) ##sets same projection as input
for i in range(image.shape[2]):
outdata.GetRasterBand(i + 1).WriteArray(image[..., i])
outdata.FlushCache() ##saves to disk!!
outdata = None
band = None
ds = None
def save_shapefile_from_polygons(polygons, image_filepath, output_shapefile_filepath, properties_list=None):
"""
https://gis.stackexchange.com/a/52708/8104
"""
assert type(polygons) == list and type(polygons[0]) == np.ndarray and \
len(polygons[0].shape) == 2 and polygons[0].shape[1] == 2, \
"polygons should be a list of numpy arrays with shape (N, 2)"
if properties_list is not None:
assert len(polygons) == len(properties_list), "polygons and properties_list should have the same length"
coor, gt, coor_system = get_coor_in_space(image_filepath)
transform_mat = compute_image_to_epsg_mat(coor, gt)
# Convert polygons to ogr_polygons
ogr_polygons = create_ogr_polygons(polygons, transform_mat)
driver = ogr.GetDriverByName('Esri Shapefile')
ds = driver.CreateDataSource(output_shapefile_filepath)
# create the spatial reference, WGS84
srs = osr.SpatialReference()
srs.ImportFromEPSG(4326)
layer = ds.CreateLayer('', None, ogr.wkbPolygon)
# Add one attribute
field_name_list = []
field_type_list = []
if properties_list is not None:
for properties in properties_list:
for (key, value) in properties.items():
if key not in field_name_list:
field_name_list.append(key)
field_type_list.append(type(value))
for (name, py_type) in zip(field_name_list, field_type_list):
if py_type == int:
ogr_type = ogr.OFTInteger
elif py_type == float:
print("is float")
ogr_type = ogr.OFTReal
elif py_type == str:
ogr_type = ogr.OFTString
else:
ogr_type = ogr.OFTInteger
layer.CreateField(ogr.FieldDefn(name, ogr_type))
defn = layer.GetLayerDefn()
for index in range(len(ogr_polygons)):
ogr_polygon = ogr_polygons[index]
if properties_list is not None:
properties = properties_list[index]
else:
properties = {}
# Create a new feature (attribute and geometry)
feat = ogr.Feature(defn)
for (key, value) in properties.items():
feat.SetField(key, value)
# Make a geometry, from Shapely object
geom = ogr.CreateGeometryFromWkt(ogr_polygon)
feat.SetGeometry(geom)
layer.CreateFeature(feat)
feat = geom = None # destroy these
# Save and close everything
ds = layer = feat = geom = None
def save_shapefile_from_shapely_polygons(polygons, image_filepath, output_shapefile_filepath):
# Define a polygon feature geometry with one attribute
schema = {
'geometry': 'Polygon',
'properties': {'id': 'int'},
}
shp_crs = "EPSG:4326"
shp_srs = Proj(shp_crs)
raster = rasterio.open(image_filepath)
# raster_srs = Proj(raster.crs)
raster_proj = lambda x, y: raster.transform * (x, y)
# shp_proj = functools.partial(transform, raster_srs, shp_srs)
# shp_proj = Transformer.from_proj(raster_srs, shp_srs).transform
# Write a new Shapefile
os.makedirs(os.path.dirname(output_shapefile_filepath), exist_ok=True)
with fiona.open(output_shapefile_filepath, 'w', driver='ESRI Shapefile', schema=schema, crs=fiona.crs.from_epsg(4326)) as c:
for id, polygon in enumerate(polygons):
# print("---")
# print(polygon)
raster_polygon = shapely.ops.transform(raster_proj, polygon)
# print(raster_polygon)
# shp_polygon = shapely.ops.transform(shp_proj, raster_polygon)
# print(shp_polygon)
wkt_polygon = shapely.geometry.mapping(raster_polygon)
c.write({
'geometry': wkt_polygon,
'properties': {'id': id},
})
def indices_of_biggest_intersecting_polygon(polygon_list):
"""
Assumes polygons which intersect follow each other on the order given by polygon_list.
This avoids the huge complexity of looking for an intersection between every polygon.
:param ori_gt_polygons:
:return:
"""
keep_index_list = []
current_cluster = [] # Indices of the polygons belonging to the current cluster (their union has one component)
for index, polygon in enumerate(polygon_list):
# First, check if polygon intersects with current_cluster:
current_cluster_polygons = [polygon_list[index] for index in current_cluster]
is_intersection = polygon_utils.check_intersection_with_polygons(polygon, current_cluster_polygons)
if is_intersection:
# Just add polygon to the cluster, nothing else to do
current_cluster.append(index)
else:
# This mean the current polygon is part of the next cluster.
# First, find the biggest polygon in the current cluster
cluster_max_index = 0
cluster_max_area = 0
for cluster_polygon_index in current_cluster:
cluster_polygon = polygon_list[cluster_polygon_index]
area = polygon_utils.polygon_area(cluster_polygon)
if cluster_max_area < area:
cluster_max_area = area
cluster_max_index = cluster_polygon_index
# Add index of the biggest polygon to the keep_index_list:
keep_index_list.append(cluster_max_index)
# Second, create a new cluster with the current polygon index
current_cluster = [index]
return keep_index_list
def get_pixelsize(filepath):
raster = gdal.Open(filepath)
gt = raster.GetGeoTransform()
pixelsize_x = gt[1]
pixelsize_y = -gt[5]
pixelsize = (pixelsize_x + pixelsize_y) / 2
return pixelsize
def crop_shapefile(input_filepath, mask_filepath, output_filepath):
shp_mask_filepath = os.path.join(os.path.dirname(input_filepath), "mask.shp")
# ogr2ogr.main(["", "-f", "ESRI Shapefile", shp_mask_filepath, mask_filepath])
# # ogr2ogr.main(["", "-f", "KML", "-clipsrc", mask_filepath, output_filepath, input_filepath])
# # script_filepath = os.path.join(os.path.dirname(__file__), "crop_shp_with_shp.sh")
# # subprocess.Popen(["ogr2ogr", "-clipsrc", mask_filepath, output_filepath, input_filepath])
#
# print(input_filepath)
# print(mask_filepath)
# print(output_filepath)
# callstr = ['ogr2ogr',
# "-overwrite",
# "-t_srs",
# "EPSG:27700",
# '-clipsrc',
# shp_mask_filepath,
# output_filepath,
# input_filepath,
# "-skipfailures"]
# proc = subprocess.Popen(callstr, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# stdout, stderr = proc.communicate()
# print(stdout)
# print(stderr)
input_file = ogr.Open(input_filepath)
assert input_file is not None, "File {} does not exist!".format(input_filepath)
input_layer = input_file.GetLayer(0)
# for i in range(input_layer.GetFeatureCount()):
# feature = input_layer.GetFeature(i)
# raw_json = feature.ExportToJson()
# parsed_json = json.loads(raw_json)
# print(parsed_json)
# break
mask_file = ogr.Open(shp_mask_filepath)
assert mask_file is not None, "File {} does not exist!".format(shp_mask_filepath)
mask_layer = mask_file.GetLayer(0)
print(mask_layer.GetFeatureCount())
feature = mask_layer.GetFeature(0)
raw_json = feature.ExportToJson()
parsed_json = json.loads(raw_json)
print(parsed_json)
# create empty result layer
ogrGeometryType = ogr.Geometry(ogr.wkbPolygon)
outDriver = ogr.GetDriverByName("ESRI Shapefile")
outDs = outDriver.CreateDataSource(output_filepath)
outLayer = outDs.CreateLayer('', None, ogr.wkbPolygon)
input_layer.Intersection(mask_layer, outLayer, options=["SKIP_FAILURES=YES"])
def main():
main_dirpath = "/workspace/data/stereo_dataset/raw/leibnitz"
image_filepath = os.path.join(main_dirpath, "leibnitz_ortho_ref_RGB.tif")
input_shapefile_filepath = os.path.join(main_dirpath, "Leibnitz_buildings_ref.shp")
output_shapefile_filepath = os.path.join(main_dirpath, "Leibnitz_buildings_ref.shifted.shp")
polygons, properties_list = get_polygons_from_shapefile(image_filepath, input_shapefile_filepath)
print(polygons[0])
print(properties_list[0])
# Add shift
shift = np.array([0, 0])
shifted_polygons = [polygon + shift for polygon in polygons]
print(shifted_polygons[0])
# Save shapefile
save_shapefile_from_polygons(shifted_polygons, image_filepath, output_shapefile_filepath, properties_list=properties_list)
if __name__ == "__main__":
main()
|