File size: 6,625 Bytes
abd2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import os

import matplotlib.pyplot as plt

import numpy as np

from lydorn_utils import python_utils
from lydorn_utils import print_utils


def get_args():
    argparser = argparse.ArgumentParser(description=__doc__)
    argparser.add_argument(
        '--dirpath',
        default="/home/lydorn/data/mapping_challenge_dataset/eval_runs",
        type=str,
        help='Path to eval directory')

    args = argparser.parse_args()
    return args


def plot_metric(dirpath, info_list):
    legend = []
    for info in info_list:
        metrics_filepath = os.path.join(dirpath, info["metrics_filepath"])
        metrics = python_utils.load_json(metrics_filepath)
        if metrics:
            max_angle_diffs = np.array(metrics["max_angle_diffs"])
            total = len(max_angle_diffs)
            angle_thresholds = range(0, 91)
            fraction_under_threshold_list = []
            for angle_threshold in angle_thresholds:
                fraction_under_threshold = np.sum(max_angle_diffs < angle_threshold) / total
                fraction_under_threshold_list.append(fraction_under_threshold)
            # Plot
            plt.plot(angle_thresholds, fraction_under_threshold_list)

            # Compute mean
            mean_error = np.mean(max_angle_diffs)

            legend.append(f"{info['name']}: {mean_error:.1f}°")

        else:
            print_utils.print_warning("WARNING: could not open {}".format(info["metrics_filepath"]))

    plt.legend(legend, loc='lower right')
    plt.xlabel("Threshold (degrees)")
    plt.ylabel("Fraction of detections")
    axes = plt.gca()
    axes.set_xlim([0, 90])
    axes.set_ylim([0, 1])
    title = f"Cumulative max tangent angle error per detection"
    plt.title(title)
    plt.savefig(title.lower().replace(" ", "_") + ".pdf")
    plt.show()


def main():
    args = get_args()


    # Mapping challenge:
    info_list = [
        {
            "name": "UResNet101 (no field), simple poly.",
            "metrics_filepath": "mapping_dataset.unet_resnet101_pretrained.field_off.train_val | 2020-05-21 08:33:20/test.metrics.test.annotation.poly.simple.tol_0.125.json"
        },
        {
            "name": "UResNet101 (with field), simple poly.",
            "metrics_filepath": "mapping_dataset.unet_resnet101_pretrained.train_val | 2020-05-21 08:32:48/test.metrics.test.annotation.poly.simple.tol_0.125.json"
        },
        {
            "name": "UResNet101 (with field), our poly.",
            "metrics_filepath": "mapping_dataset.unet_resnet101_pretrained.train_val | 2020-05-21 08:32:48/test.metrics.test.annotation.poly.acm.tol_0.125.json"
        },
        {
            "name": "UResNet101 (no $L_{align90}$), our poly.",
            "metrics_filepath": "mapping_dataset.unet_resnet101_pretrained.align90_off.train_val | 2020-11-02 07:34:43/test.metrics.test.annotation.poly.acm.tol_0.125.json"
        },
        {
            "name": "UResNet101 (no $L_{int edge}$), our poly.",
            "metrics_filepath": "mapping_dataset.unet_resnet101_pretrained.edge_int_off.train_val | 2020-11-02 07:34:54/test.metrics.test.annotation.poly.acm.tol_0.125.json"
        },
        {
            "name": "UResNet101 (no $L_{int align}$ and $L_{edge align}$), our poly.",
            "metrics_filepath": "mapping_dataset.unet_resnet101_pretrained.seg_framefield_off.train_val | 2020-10-29 11:27:52/test.metrics.test.annotation.poly.acm.tol_0.125.json"
        },
        {
            "name": "UResNet101 (no $L_{smooth}$), our poly.",
            "metrics_filepath": "mapping_dataset.unet_resnet101_pretrained.smooth_off.train_val | 2020-10-29 11:18:33/test.metrics.test.annotation.poly.acm.tol_0.125.json"
        },

        {
            "name": "PolyMapper",
            "metrics_filepath": "mapping_dataset.polymapper | 0000-00-00 00:00:00/test.metrics.test.annotation.poly.json"
        },
        {
            "name": "U-Net variant, ASIP poly.",
            "metrics_filepath": "mapping_dataset.asip | 0000-00-00 00:00:00/test.metrics.test.annotation.poly.json"
        },
        {
            "name": "Zorzi et al.",
            "metrics_filepath": "mapping_dataset.zorzi | 0000-00-00 00:00:00/test.metrics.test.annotation.poly.json"
        },
        {
            "name": "U-Net variant, UResNet101 poly",
            "metrics_filepath": "mapping_dataset.open_solution_full | 0000-00-00 00:00:00/test.metrics.test.annotation.seg_cleaned.poly.json"
        }
    ]

    # Inria Polygonized Dataset
    # info_list = [
    #     {
    #         "name": "UResNet101 (no field), simple poly.",
    #         "metrics_filepath": "/home/lydorn/data/AerialImageDataset/raw/test/pred_ours_leaderboard_new_losses.field_off/poly_shapefile.simple.tol_1/aggr_metrics.json"
    #     },
    #     {
    #         "name": "UResNet101 (with field), our poly.",
    #         "metrics_filepath": "/home/lydorn/data/AerialImageDataset/raw/test/pred_ours_leaderboard/poly_shapefile.acm.tol_0.125/aggr_metrics.json"
    #     },
    #     {
    #         "name": "Zorzi et al.",
    #         "metrics_filepath": "/home/lydorn/data/AerialImageDataset/raw/test/pred_zorzi/shapes/aggr_metrics.json"
    #     },
    #     {
    #         "name": "ICTNet, simple poly.",
    #         "metrics_filepath": "/home/lydorn/data/AerialImageDataset/raw/test/pred_ictnet/shp/aggr_metrics.json"
    #     },
    #     {
    #         "name": "Khvedchenya, simple poly.",
    #         "metrics_filepath": "/home/lydorn/data/AerialImageDataset/raw/test/pred_khvedchenya/shp/aggr_metrics.json"
    #     },
    # ]

    # LuxCarta's Bangkok image
    # info_list = [
    #     {
    #         "name": "ACM",
    #         "metrics_filepath": "/home/lydorn/repos/lydorn/frame_field_learning/frame_field_learning/test_images/Bangkok/Bangkok3bands.poly_acm.metrics.json"
    #     },
    #     {
    #         "name": "ASM",
    #         "metrics_filepath": "/home/lydorn/repos/lydorn/frame_field_learning/frame_field_learning/test_images/Bangkok/Bangkok3bands.poly_asm.metrics.json"
    #     },
    #     {
    #         "name": "ASM regularized",
    #         "metrics_filepath": "/home/lydorn/repos/lydorn/frame_field_learning/frame_field_learning/test_images/Bangkok/Bangkok3bands.reg.metrics.json"
    #     },
    #     {
    #         "name": "Company",
    #         "metrics_filepath": "/home/lydorn/repos/lydorn/frame_field_learning/frame_field_learning/test_images/Bangkok/Luxcarta/Building_Thailand_Bangkok_pansharpened25.metrics.json"
    #     },
    # ]

    plot_metric(args.dirpath, info_list)


if __name__ == '__main__':
    main()