Spaces:
Build error
Build error
| import math | |
| import torch | |
| from torch import nn | |
| class DenseResidualBlock(nn.Module): | |
| """ | |
| 密集连接型残差网络 | |
| """ | |
| def __init__(self, filters, res_scale=0.2): | |
| super(DenseResidualBlock, self).__init__() | |
| self.res_scale = res_scale | |
| def block(in_features, non_linearity=True): | |
| layers = [nn.Conv2d(in_features, filters, 3, 1, 1, bias=True)] | |
| if non_linearity: | |
| layers += [nn.GELU()] | |
| return nn.Sequential(*layers) | |
| self.b1 = block(in_features=1 * filters) | |
| self.b2 = block(in_features=2 * filters) | |
| self.b3 = block(in_features=3 * filters) | |
| self.b4 = block(in_features=4 * filters) | |
| self.b5 = block(in_features=5 * filters, non_linearity=False) | |
| self.blocks = [self.b1, self.b2, self.b3, self.b4, self.b5] | |
| def forward(self, x): | |
| inputs = x | |
| for block in self.blocks: | |
| out = block(inputs) | |
| inputs = torch.cat([inputs, out], 1) | |
| return out.mul(self.res_scale) + x | |
| class ResidualInResidualDenseBlock(nn.Module): | |
| def __init__(self, filters, res_scale=0.2): | |
| super(ResidualInResidualDenseBlock, self).__init__() | |
| self.res_scale = res_scale | |
| self.dense_blocks = nn.Sequential( | |
| DenseResidualBlock(filters), DenseResidualBlock(filters), DenseResidualBlock(filters) | |
| ) | |
| def forward(self, x): | |
| return self.dense_blocks(x).mul(self.res_scale) + x | |
| class UpsampleBLock(nn.Module): | |
| def __init__(self, in_channels, up_scale): | |
| super(UpsampleBLock, self).__init__() | |
| self.conv = nn.Conv2d(in_channels, in_channels * up_scale ** 2, kernel_size=3, padding=1) | |
| self.pixel_shuffle = nn.PixelShuffle(up_scale) | |
| self.gelu = nn.GELU() | |
| def forward(self, x): | |
| x = self.conv(x) | |
| x = self.pixel_shuffle(x) | |
| x = self.gelu(x) | |
| return x | |
| class Generator(nn.Module): | |
| def __init__(self, scale_factor, channels=3, filters=64, num_res_blocks=4): | |
| super(Generator, self).__init__() | |
| upsample_block_num = int(math.log(scale_factor, 2)) | |
| # 第一个卷积层 | |
| self.conv1 = nn.Conv2d(channels, filters, kernel_size=3, stride=1, padding=1) | |
| # 密集残差连接块 | |
| self.res_blocks = nn.Sequential(*[ResidualInResidualDenseBlock(filters) for _ in range(num_res_blocks)]) | |
| # 第二个卷积层 | |
| self.conv2 = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1) | |
| self.upsample = [UpsampleBLock(filters, 2) for _ in range(upsample_block_num)] | |
| self.upsample = nn.Sequential(*self.upsample) | |
| # 输出卷积层 | |
| self.conv3 = nn.Sequential( | |
| nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1), | |
| nn.GELU(), | |
| nn.Conv2d(filters, channels, kernel_size=3, stride=1, padding=1) | |
| ) | |
| def forward(self, x): | |
| out1 = self.conv1(x) | |
| out = self.res_blocks(out1) | |
| out2 = self.conv2(out) | |
| out = torch.add(out1, out2) | |
| upsample = self.upsample(out) | |
| out = self.conv3(upsample) | |
| return out | |
| class Discriminator(nn.Module): | |
| def __init__(self): | |
| super(Discriminator, self).__init__() | |
| self.net = nn.Sequential( | |
| nn.Conv2d(3, 64, kernel_size=3, padding=1), | |
| nn.GELU(), | |
| nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), | |
| nn.BatchNorm2d(64), | |
| nn.GELU(), | |
| nn.Conv2d(64, 128, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(128), | |
| nn.GELU(), | |
| nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1), | |
| nn.BatchNorm2d(128), | |
| nn.GELU(), | |
| nn.Conv2d(128, 256, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(256), | |
| nn.GELU(), | |
| nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1), | |
| nn.BatchNorm2d(256), | |
| nn.GELU(), | |
| nn.Conv2d(256, 512, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(512), | |
| nn.GELU(), | |
| nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), | |
| nn.BatchNorm2d(512), | |
| nn.GELU(), | |
| nn.AdaptiveAvgPool2d(1), | |
| nn.Conv2d(512, 1024, kernel_size=1), | |
| nn.GELU(), | |
| nn.Conv2d(1024, 1, kernel_size=1) | |
| ) | |
| def forward(self, x): | |
| batch_size = x.size(0) | |
| return torch.sigmoid(self.net(x).view(batch_size)) | |
| if __name__ == "__main__": | |
| from torchsummary import summary | |
| # 需要使用device来指定网络在GPU还是CPU运行 | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| model = Generator(8).to(device) | |
| summary(model, input_size=(3,12,24)) | |