Spaces:
Build error
Build error
File size: 4,820 Bytes
905cd18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import math
import torch
from torch import nn
class DenseResidualBlock(nn.Module):
"""
密集连接型残差网络
"""
def __init__(self, filters, res_scale=0.2):
super(DenseResidualBlock, self).__init__()
self.res_scale = res_scale
def block(in_features, non_linearity=True):
layers = [nn.Conv2d(in_features, filters, 3, 1, 1, bias=True)]
if non_linearity:
layers += [nn.GELU()]
return nn.Sequential(*layers)
self.b1 = block(in_features=1 * filters)
self.b2 = block(in_features=2 * filters)
self.b3 = block(in_features=3 * filters)
self.b4 = block(in_features=4 * filters)
self.b5 = block(in_features=5 * filters, non_linearity=False)
self.blocks = [self.b1, self.b2, self.b3, self.b4, self.b5]
def forward(self, x):
inputs = x
for block in self.blocks:
out = block(inputs)
inputs = torch.cat([inputs, out], 1)
return out.mul(self.res_scale) + x
class ResidualInResidualDenseBlock(nn.Module):
def __init__(self, filters, res_scale=0.2):
super(ResidualInResidualDenseBlock, self).__init__()
self.res_scale = res_scale
self.dense_blocks = nn.Sequential(
DenseResidualBlock(filters), DenseResidualBlock(filters), DenseResidualBlock(filters)
)
def forward(self, x):
return self.dense_blocks(x).mul(self.res_scale) + x
class UpsampleBLock(nn.Module):
def __init__(self, in_channels, up_scale):
super(UpsampleBLock, self).__init__()
self.conv = nn.Conv2d(in_channels, in_channels * up_scale ** 2, kernel_size=3, padding=1)
self.pixel_shuffle = nn.PixelShuffle(up_scale)
self.gelu = nn.GELU()
def forward(self, x):
x = self.conv(x)
x = self.pixel_shuffle(x)
x = self.gelu(x)
return x
class Generator(nn.Module):
def __init__(self, scale_factor, channels=3, filters=64, num_res_blocks=4):
super(Generator, self).__init__()
upsample_block_num = int(math.log(scale_factor, 2))
# 第一个卷积层
self.conv1 = nn.Conv2d(channels, filters, kernel_size=3, stride=1, padding=1)
# 密集残差连接块
self.res_blocks = nn.Sequential(*[ResidualInResidualDenseBlock(filters) for _ in range(num_res_blocks)])
# 第二个卷积层
self.conv2 = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1)
self.upsample = [UpsampleBLock(filters, 2) for _ in range(upsample_block_num)]
self.upsample = nn.Sequential(*self.upsample)
# 输出卷积层
self.conv3 = nn.Sequential(
nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1),
nn.GELU(),
nn.Conv2d(filters, channels, kernel_size=3, stride=1, padding=1)
)
def forward(self, x):
out1 = self.conv1(x)
out = self.res_blocks(out1)
out2 = self.conv2(out)
out = torch.add(out1, out2)
upsample = self.upsample(out)
out = self.conv3(upsample)
return out
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.net = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.GELU(),
nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.GELU(),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.GELU(),
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.GELU(),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.GELU(),
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.GELU(),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.GELU(),
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.GELU(),
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(512, 1024, kernel_size=1),
nn.GELU(),
nn.Conv2d(1024, 1, kernel_size=1)
)
def forward(self, x):
batch_size = x.size(0)
return torch.sigmoid(self.net(x).view(batch_size))
if __name__ == "__main__":
from torchsummary import summary
# 需要使用device来指定网络在GPU还是CPU运行
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Generator(8).to(device)
summary(model, input_size=(3,12,24))
|