Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1994 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
from bs4 import BeautifulSoup, NavigableString, Tag
|
5 |
+
import re
|
6 |
+
import time
|
7 |
+
import random
|
8 |
+
import nltk
|
9 |
+
from nltk.tokenize import sent_tokenize
|
10 |
+
|
11 |
+
# Download required NLTK data
|
12 |
+
try:
|
13 |
+
nltk.download('punkt', quiet=True)
|
14 |
+
except:
|
15 |
+
pass
|
16 |
+
|
17 |
+
# Try to import spaCy but make it optional
|
18 |
+
try:
|
19 |
+
import spacy
|
20 |
+
SPACY_AVAILABLE = True
|
21 |
+
except:
|
22 |
+
print("spaCy not available, using NLTK for sentence processing")
|
23 |
+
SPACY_AVAILABLE = False
|
24 |
+
|
25 |
+
class HumanLikeVariations:
|
26 |
+
"""Add human-like variations and intentional imperfections"""
|
27 |
+
|
28 |
+
def __init__(self):
|
29 |
+
# Common human writing patterns - EXPANDED for Originality AI
|
30 |
+
self.casual_transitions = [
|
31 |
+
"So, ", "Well, ", "Now, ", "Actually, ", "Basically, ",
|
32 |
+
"You know, ", "I mean, ", "Thing is, ", "Honestly, ",
|
33 |
+
"Look, ", "Listen, ", "See, ", "Okay, ", "Right, ",
|
34 |
+
"Anyway, ", "Besides, ", "Plus, ", "Also, ", "Oh, ",
|
35 |
+
"Hey, ", "Alright, ", "Sure, ", "Fine, ", "Obviously, ",
|
36 |
+
"Clearly, ", "Seriously, ", "Literally, ", "Frankly, ",
|
37 |
+
"To be honest, ", "Truth is, ", "In fact, ", "Believe it or not, ",
|
38 |
+
"Here's the thing, ", "Let me tell you, ", "Get this, ",
|
39 |
+
"Funny thing is, ", "Interestingly, ", "Surprisingly, ",
|
40 |
+
"Let's be real here, ", "Can we talk about ", "Quick question: ",
|
41 |
+
"Real talk: ", "Hot take: ", "Unpopular opinion: ", "Fun fact: ",
|
42 |
+
"Pro tip: ", "Side note: ", "Random thought: ", "Food for thought: ",
|
43 |
+
"Just saying, ", "Not gonna lie, ", "For what it's worth, ",
|
44 |
+
"If you ask me, ", "Between you and me, ", "Here's my take: ",
|
45 |
+
"Let's face it, ", "No kidding, ", "Seriously though, ",
|
46 |
+
"But wait, ", "Hold on, ", "Check this out: ", "Guess what? "
|
47 |
+
]
|
48 |
+
|
49 |
+
self.filler_phrases = [
|
50 |
+
"kind of", "sort of", "pretty much", "basically", "actually",
|
51 |
+
"really", "just", "quite", "rather", "fairly", "totally",
|
52 |
+
"definitely", "probably", "maybe", "perhaps", "somehow",
|
53 |
+
"somewhat", "literally", "seriously", "honestly", "frankly",
|
54 |
+
"simply", "merely", "purely", "truly", "genuinely",
|
55 |
+
"absolutely", "completely", "entirely", "utterly", "practically",
|
56 |
+
"virtually", "essentially", "fundamentally", "generally", "typically",
|
57 |
+
"usually", "normally", "often", "sometimes", "occasionally",
|
58 |
+
"apparently", "evidently", "obviously", "clearly", "seemingly",
|
59 |
+
"arguably", "potentially", "possibly", "likely", "unlikely",
|
60 |
+
"more or less", "give or take", "so to speak", "if you will",
|
61 |
+
"per se", "as such", "in a way", "to some extent", "to a degree",
|
62 |
+
"I kid you not", "no joke", "for real", "not gonna lie",
|
63 |
+
"I'm telling you", "trust me", "believe me", "I swear",
|
64 |
+
"hands down", "without a doubt", "100%", "straight up",
|
65 |
+
"I think", "I feel like", "I guess", "I suppose", "seems like",
|
66 |
+
"appears to be", "might be", "could be", "tends to", "tends to be",
|
67 |
+
"in my experience", "from what I've seen", "as far as I know",
|
68 |
+
"to the best of my knowledge", "if I'm not mistaken", "correct me if I'm wrong",
|
69 |
+
"you know what", "here's the deal", "bottom line", "at any rate",
|
70 |
+
"all in all", "when you think about it", "come to think of it",
|
71 |
+
"now that I think about it", "if we're being honest", "to be fair"
|
72 |
+
]
|
73 |
+
|
74 |
+
self.human_connectors = [
|
75 |
+
", which means", ", so", ", because", ", since", ", although",
|
76 |
+
". That's why", ". This means", ". So basically,", ". The thing is,",
|
77 |
+
", and honestly", ", but here's the thing", ", though", ", however",
|
78 |
+
". Plus,", ". Also,", ". Besides,", ". Moreover,", ". Furthermore,",
|
79 |
+
", which is why", ", and that's because", ", given that", ", considering",
|
80 |
+
". In other words,", ". Put simply,", ". To clarify,", ". That said,",
|
81 |
+
", you see", ", you know", ", right?", ", okay?", ", yeah?",
|
82 |
+
". Here's why:", ". Let me explain:", ". Think about it:",
|
83 |
+
", if you ask me", ", in my opinion", ", from my perspective",
|
84 |
+
". On the flip side,", ". On the other hand,", ". Conversely,",
|
85 |
+
", not to mention", ", let alone", ", much less", ", aside from",
|
86 |
+
". What's more,", ". Even better,", ". Even worse,", ". The catch is,",
|
87 |
+
", believe it or not", ", surprisingly enough", ", interestingly enough",
|
88 |
+
". Long story short,", ". Bottom line is,", ". Point being,",
|
89 |
+
", as you might expect", ", as it turns out", ", as luck would have it",
|
90 |
+
". And get this:", ". But wait, there's more:", ". Here's the kicker:",
|
91 |
+
", and here's why", ", and here's the thing", ", but here's what happened",
|
92 |
+
". Spoiler alert:", ". Plot twist:", ". Reality check:",
|
93 |
+
", at the end of the day", ", when all is said and done", ", all things considered",
|
94 |
+
". Make no mistake,", ". Don't get me wrong,", ". Let's not forget,",
|
95 |
+
", between you and me", ", off the record", ", just between us",
|
96 |
+
". And honestly?", ". But seriously,", ". And you know what?",
|
97 |
+
", which brings me to", ". This reminds me of", ", speaking of which",
|
98 |
+
". Funny enough,", ". Weird thing is,", ". Strange but true:",
|
99 |
+
", and I mean", ". I'm not kidding when I say", ", and trust me on this"
|
100 |
+
]
|
101 |
+
|
102 |
+
# NEW: Common human typos and variations
|
103 |
+
self.common_typos = {
|
104 |
+
"the": ["teh", "th", "hte"],
|
105 |
+
"and": ["adn", "nad", "an"],
|
106 |
+
"that": ["taht", "htat", "tha"],
|
107 |
+
"with": ["wiht", "wtih", "iwth"],
|
108 |
+
"have": ["ahve", "hvae", "hav"],
|
109 |
+
"from": ["form", "fro", "frmo"],
|
110 |
+
"they": ["tehy", "thye", "htey"],
|
111 |
+
"which": ["whihc", "wich", "whcih"],
|
112 |
+
"their": ["thier", "theri", "tehir"],
|
113 |
+
"would": ["woudl", "wuold", "woul"],
|
114 |
+
"there": ["tehre", "theer", "ther"],
|
115 |
+
"could": ["coudl", "cuold", "coud"],
|
116 |
+
"people": ["poeple", "peopel", "pepole"],
|
117 |
+
"through": ["thorugh", "throught", "trhough"],
|
118 |
+
"because": ["becuase", "becasue", "beacuse"],
|
119 |
+
"before": ["beofre", "befroe", "befor"],
|
120 |
+
"different": ["differnt", "differnet", "diferent"],
|
121 |
+
"between": ["bewteen", "betwen", "betewen"],
|
122 |
+
"important": ["improtant", "importnat", "importan"],
|
123 |
+
"information": ["infromation", "informaiton", "informaton"]
|
124 |
+
}
|
125 |
+
|
126 |
+
# NEW: Human-like sentence starters for variety
|
127 |
+
self.varied_starters = [
|
128 |
+
"When it comes to", "As for", "Regarding", "In terms of",
|
129 |
+
"With respect to", "Concerning", "Speaking of", "About",
|
130 |
+
"If we look at", "Looking at", "Considering", "Given",
|
131 |
+
"Taking into account", "Bear in mind that", "Keep in mind",
|
132 |
+
"It's worth noting that", "It should be noted that",
|
133 |
+
"One thing to consider is", "An important point is",
|
134 |
+
"What's interesting is", "What stands out is",
|
135 |
+
"The key here is", "The main thing is", "The point is",
|
136 |
+
"Here's what matters:", "Here's the deal:", "Here's something:",
|
137 |
+
"Let's not forget", "We should remember", "Don't forget",
|
138 |
+
"Think about it this way:", "Look at it like this:",
|
139 |
+
"Consider this:", "Picture this:", "Imagine this:",
|
140 |
+
"You might wonder", "You might ask", "You may think",
|
141 |
+
"Some people say", "Many believe", "It's often said",
|
142 |
+
"Research shows", "Studies indicate", "Evidence suggests",
|
143 |
+
"Experience tells us", "History shows", "Time has shown"
|
144 |
+
]
|
145 |
+
|
146 |
+
def add_human_touch(self, text):
|
147 |
+
"""Add subtle human-like imperfections - MORE AGGRESSIVE"""
|
148 |
+
sentences = text.split('. ')
|
149 |
+
modified_sentences = []
|
150 |
+
|
151 |
+
for i, sent in enumerate(sentences):
|
152 |
+
if not sent.strip():
|
153 |
+
continue
|
154 |
+
|
155 |
+
# Occasionally start with casual transition (25% chance - increased)
|
156 |
+
if i > 0 and random.random() < 0.25 and len(sent.split()) > 5:
|
157 |
+
transition = random.choice(self.casual_transitions)
|
158 |
+
sent = transition + sent[0].lower() + sent[1:] if len(sent) > 1 else sent
|
159 |
+
|
160 |
+
# Add filler words occasionally (20% chance - increased)
|
161 |
+
if random.random() < 0.2 and len(sent.split()) > 8:
|
162 |
+
words = sent.split()
|
163 |
+
# Add multiple fillers sometimes
|
164 |
+
num_fillers = random.randint(1, 2)
|
165 |
+
for _ in range(num_fillers):
|
166 |
+
if len(words) > 4:
|
167 |
+
insert_pos = random.randint(2, len(words)-2)
|
168 |
+
filler = random.choice(self.filler_phrases)
|
169 |
+
words.insert(insert_pos, filler)
|
170 |
+
sent = ' '.join(words)
|
171 |
+
|
172 |
+
# Add varied sentence starters (15% chance)
|
173 |
+
if i > 0 and random.random() < 0.15 and len(sent.split()) > 10:
|
174 |
+
starter = random.choice(self.varied_starters)
|
175 |
+
sent = starter + " " + sent[0].lower() + sent[1:] if len(sent) > 1 else sent
|
176 |
+
|
177 |
+
# Occasionally use contractions (35% chance - increased)
|
178 |
+
if random.random() < 0.35:
|
179 |
+
sent = self.apply_contractions(sent)
|
180 |
+
|
181 |
+
# Add occasional comma splices (10% chance) - common human error
|
182 |
+
if random.random() < 0.1 and ',' in sent and len(sent.split()) > 10:
|
183 |
+
# Replace a period with comma sometimes
|
184 |
+
parts = sent.split(', ')
|
185 |
+
if len(parts) > 2:
|
186 |
+
join_idx = random.randint(1, len(parts)-1)
|
187 |
+
parts[join_idx-1] = parts[join_idx-1] + ','
|
188 |
+
sent = ' '.join(parts)
|
189 |
+
|
190 |
+
# NEW: Add parenthetical thoughts (8% chance)
|
191 |
+
if random.random() < 0.08 and len(sent.split()) > 15:
|
192 |
+
parentheticals = [
|
193 |
+
"(and that's saying something)",
|
194 |
+
"(which is pretty interesting)",
|
195 |
+
"(trust me on this one)",
|
196 |
+
"(I've seen this firsthand)",
|
197 |
+
"(no joke)",
|
198 |
+
"(seriously)",
|
199 |
+
"(and for good reason)",
|
200 |
+
"(believe it or not)",
|
201 |
+
"(surprisingly enough)",
|
202 |
+
"(which makes sense)",
|
203 |
+
"(go figure)",
|
204 |
+
"(who knew?)",
|
205 |
+
"(makes you think)",
|
206 |
+
"(worth considering)"
|
207 |
+
]
|
208 |
+
words = sent.split()
|
209 |
+
insert_pos = random.randint(len(words)//3, 2*len(words)//3)
|
210 |
+
parenthetical = random.choice(parentheticals)
|
211 |
+
words.insert(insert_pos, parenthetical)
|
212 |
+
sent = ' '.join(words)
|
213 |
+
|
214 |
+
# NEW: Occasionally add rhetorical questions (5% chance)
|
215 |
+
if random.random() < 0.05 and i < len(sentences) - 1:
|
216 |
+
rhetorical_questions = [
|
217 |
+
"Makes sense, right?",
|
218 |
+
"Pretty cool, huh?",
|
219 |
+
"Interesting, isn't it?",
|
220 |
+
"Who would've thought?",
|
221 |
+
"Sound familiar?",
|
222 |
+
"See what I mean?",
|
223 |
+
"Get the picture?",
|
224 |
+
"Following along?",
|
225 |
+
"Crazy, right?",
|
226 |
+
"Wild, isn't it?"
|
227 |
+
]
|
228 |
+
sent = sent + " " + random.choice(rhetorical_questions)
|
229 |
+
|
230 |
+
modified_sentences.append(sent)
|
231 |
+
|
232 |
+
return '. '.join(modified_sentences)
|
233 |
+
|
234 |
+
def apply_contractions(self, text):
|
235 |
+
"""Apply common contractions - EXPANDED"""
|
236 |
+
contractions = {
|
237 |
+
"it is": "it's", "that is": "that's", "there is": "there's",
|
238 |
+
"he is": "he's", "she is": "she's", "what is": "what's",
|
239 |
+
"where is": "where's", "who is": "who's", "how is": "how's",
|
240 |
+
"cannot": "can't", "will not": "won't", "do not": "don't",
|
241 |
+
"does not": "doesn't", "did not": "didn't", "could not": "couldn't",
|
242 |
+
"should not": "shouldn't", "would not": "wouldn't", "is not": "isn't",
|
243 |
+
"are not": "aren't", "was not": "wasn't", "were not": "weren't",
|
244 |
+
"have not": "haven't", "has not": "hasn't", "had not": "hadn't",
|
245 |
+
"I am": "I'm", "you are": "you're", "we are": "we're",
|
246 |
+
"they are": "they're", "I have": "I've", "you have": "you've",
|
247 |
+
"we have": "we've", "they have": "they've", "I will": "I'll",
|
248 |
+
"you will": "you'll", "he will": "he'll", "she will": "she'll",
|
249 |
+
"we will": "we'll", "they will": "they'll", "I would": "I'd",
|
250 |
+
"you would": "you'd", "he would": "he'd", "she would": "she'd",
|
251 |
+
"we would": "we'd", "they would": "they'd", "could have": "could've",
|
252 |
+
"should have": "should've", "would have": "would've", "might have": "might've",
|
253 |
+
"must have": "must've", "there has": "there's", "here is": "here's",
|
254 |
+
"let us": "let's", "that will": "that'll", "who will": "who'll"
|
255 |
+
}
|
256 |
+
|
257 |
+
for full, contr in contractions.items():
|
258 |
+
if random.random() < 0.8: # 80% chance to apply each contraction
|
259 |
+
text = re.sub(r'\b' + full + r'\b', contr, text, flags=re.IGNORECASE)
|
260 |
+
|
261 |
+
return text
|
262 |
+
|
263 |
+
def add_minor_errors(self, text):
|
264 |
+
"""Add very minor, human-like errors - MORE REALISTIC"""
|
265 |
+
# Occasionally miss Oxford comma (15% chance)
|
266 |
+
if random.random() < 0.15:
|
267 |
+
text = re.sub(r'(\w+), (\w+), and', r'\1, \2 and', text)
|
268 |
+
|
269 |
+
# Sometimes use 'which' instead of 'that' (8% chance)
|
270 |
+
if random.random() < 0.08:
|
271 |
+
text = text.replace(' that ', ' which ', 1)
|
272 |
+
|
273 |
+
# NEW: Add very occasional typos (3% chance per sentence)
|
274 |
+
sentences = text.split('. ')
|
275 |
+
for i, sent in enumerate(sentences):
|
276 |
+
if random.random() < 0.03 and len(sent.split()) > 10:
|
277 |
+
words = sent.split()
|
278 |
+
# Pick a random word to potentially typo
|
279 |
+
word_idx = random.randint(0, len(words)-1)
|
280 |
+
word = words[word_idx].lower()
|
281 |
+
|
282 |
+
# Only typo common words
|
283 |
+
if word in self.common_typos and random.random() < 0.5:
|
284 |
+
typo = random.choice(self.common_typos[word])
|
285 |
+
# Preserve original capitalization
|
286 |
+
if words[word_idx][0].isupper():
|
287 |
+
typo = typo[0].upper() + typo[1:]
|
288 |
+
words[word_idx] = typo
|
289 |
+
sentences[i] = ' '.join(words)
|
290 |
+
|
291 |
+
text = '. '.join(sentences)
|
292 |
+
|
293 |
+
# NEW: Occasionally double a word (2% chance)
|
294 |
+
if random.random() < 0.02:
|
295 |
+
words = text.split()
|
296 |
+
if len(words) > 20:
|
297 |
+
# Pick a small common word to double
|
298 |
+
small_words = ['the', 'a', 'an', 'is', 'was', 'are', 'were', 'to', 'of', 'in', 'on']
|
299 |
+
for idx, word in enumerate(words):
|
300 |
+
if word.lower() in small_words and random.random() < 0.1:
|
301 |
+
words[idx] = word + ' ' + word
|
302 |
+
break
|
303 |
+
text = ' '.join(words)
|
304 |
+
|
305 |
+
# NEW: Mix up common homophones occasionally (3% chance)
|
306 |
+
if random.random() < 0.03:
|
307 |
+
homophones = [
|
308 |
+
('their', 'there'), ('your', 'you\'re'), ('its', 'it\'s'),
|
309 |
+
('then', 'than'), ('to', 'too'), ('effect', 'affect')
|
310 |
+
]
|
311 |
+
for pair in homophones:
|
312 |
+
if pair[0] in text and random.random() < 0.3:
|
313 |
+
text = text.replace(pair[0], pair[1], 1)
|
314 |
+
break
|
315 |
+
|
316 |
+
return text
|
317 |
+
|
318 |
+
def add_originality_specific_patterns(self, text):
|
319 |
+
"""Add patterns that Originality AI associates with human writing"""
|
320 |
+
# 1. Add personal touches and opinions
|
321 |
+
if random.random() < 0.1:
|
322 |
+
personal_phrases = [
|
323 |
+
"In my view, ", "From my perspective, ", "I believe ",
|
324 |
+
"It seems to me that ", "I've found that ", "In my experience, ",
|
325 |
+
"I tend to think ", "My take is that ", "I'd argue that ",
|
326 |
+
"Personally, I think ", "If you ask me, ", "The way I see it, "
|
327 |
+
]
|
328 |
+
sentences = text.split('. ')
|
329 |
+
if len(sentences) > 3:
|
330 |
+
idx = random.randint(1, len(sentences)-2)
|
331 |
+
sentences[idx] = random.choice(personal_phrases) + sentences[idx][0].lower() + sentences[idx][1:]
|
332 |
+
text = '. '.join(sentences)
|
333 |
+
|
334 |
+
# 2. Add conversational asides
|
335 |
+
if random.random() < 0.08:
|
336 |
+
asides = [
|
337 |
+
" - and this is important - ",
|
338 |
+
" - bear with me here - ",
|
339 |
+
" - stay with me - ",
|
340 |
+
" - and I mean this - ",
|
341 |
+
" - no exaggeration - ",
|
342 |
+
" - true story - ",
|
343 |
+
" - I'm serious - ",
|
344 |
+
" - think about it - ",
|
345 |
+
" - and here's why - "
|
346 |
+
]
|
347 |
+
words = text.split()
|
348 |
+
if len(words) > 20:
|
349 |
+
pos = random.randint(10, len(words)-10)
|
350 |
+
words.insert(pos, random.choice(asides))
|
351 |
+
text = ' '.join(words)
|
352 |
+
|
353 |
+
# 3. Add emphatic repetition (human pattern)
|
354 |
+
if random.random() < 0.05:
|
355 |
+
emphatic_words = ['very', 'really', 'truly', 'absolutely', 'totally']
|
356 |
+
sentences = text.split('. ')
|
357 |
+
if sentences:
|
358 |
+
sent_idx = random.randint(0, len(sentences)-1)
|
359 |
+
words = sentences[sent_idx].split()
|
360 |
+
if len(words) > 5:
|
361 |
+
# Find an adjective or adverb to emphasize
|
362 |
+
for i, word in enumerate(words):
|
363 |
+
if i > 0 and i < len(words)-1:
|
364 |
+
# Add emphasis
|
365 |
+
if random.random() < 0.3:
|
366 |
+
emphasis = random.choice(emphatic_words)
|
367 |
+
words.insert(i, emphasis)
|
368 |
+
# Sometimes repeat for extra emphasis
|
369 |
+
if random.random() < 0.3:
|
370 |
+
words.insert(i, emphasis + ',')
|
371 |
+
break
|
372 |
+
sentences[sent_idx] = ' '.join(words)
|
373 |
+
text = '. '.join(sentences)
|
374 |
+
|
375 |
+
return text
|
376 |
+
|
377 |
+
class SelectiveGrammarFixer:
|
378 |
+
"""Minimal grammar fixes to maintain human-like quality while fixing critical errors"""
|
379 |
+
|
380 |
+
def __init__(self):
|
381 |
+
self.nlp = None
|
382 |
+
self.human_variations = HumanLikeVariations()
|
383 |
+
|
384 |
+
def fix_incomplete_sentences_only(self, text):
|
385 |
+
"""Fix only incomplete sentences without over-correcting"""
|
386 |
+
if not text:
|
387 |
+
return text
|
388 |
+
|
389 |
+
sentences = text.split('. ')
|
390 |
+
fixed_sentences = []
|
391 |
+
|
392 |
+
for i, sent in enumerate(sentences):
|
393 |
+
sent = sent.strip()
|
394 |
+
if not sent:
|
395 |
+
continue
|
396 |
+
|
397 |
+
# Only fix if sentence is incomplete
|
398 |
+
if sent and sent[-1] not in '.!?':
|
399 |
+
# Check if it's the last sentence
|
400 |
+
if i == len(sentences) - 1:
|
401 |
+
# Add period if it's clearly a statement
|
402 |
+
if not sent.endswith(':') and not sent.endswith(','):
|
403 |
+
sent += '.'
|
404 |
+
else:
|
405 |
+
# Middle sentences should have periods
|
406 |
+
sent += '.'
|
407 |
+
|
408 |
+
# Fix cut-off words (very short last word without punctuation)
|
409 |
+
words = sent.split()
|
410 |
+
if len(words) > 3:
|
411 |
+
last_word = words[-1].rstrip('.!?')
|
412 |
+
if len(last_word) <= 2 and last_word.isalpha():
|
413 |
+
# Check if it has vowels (real word vs cut-off)
|
414 |
+
if not any(c in 'aeiouAEIOU' for c in last_word):
|
415 |
+
# Likely a cut-off word, remove it
|
416 |
+
words = words[:-1]
|
417 |
+
sent = ' '.join(words)
|
418 |
+
if sent and sent[-1] not in '.!?':
|
419 |
+
sent += '.'
|
420 |
+
|
421 |
+
# Ensure first letter capitalization ONLY after sentence endings
|
422 |
+
if i > 0 and sent and sent[0].islower():
|
423 |
+
# Check if previous sentence ended with punctuation
|
424 |
+
if fixed_sentences and fixed_sentences[-1].rstrip().endswith(('.', '!', '?')):
|
425 |
+
sent = sent[0].upper() + sent[1:]
|
426 |
+
elif i == 0 and sent and sent[0].islower():
|
427 |
+
# First sentence should be capitalized
|
428 |
+
sent = sent[0].upper() + sent[1:]
|
429 |
+
|
430 |
+
fixed_sentences.append(sent)
|
431 |
+
|
432 |
+
result = ' '.join(fixed_sentences)
|
433 |
+
|
434 |
+
# Add human-like variations
|
435 |
+
result = self.human_variations.add_human_touch(result)
|
436 |
+
result = self.human_variations.add_minor_errors(result)
|
437 |
+
result = self.human_variations.add_originality_specific_patterns(result)
|
438 |
+
|
439 |
+
return result
|
440 |
+
|
441 |
+
def fix_basic_punctuation_errors(self, text):
|
442 |
+
"""Fix only the most egregious punctuation errors"""
|
443 |
+
if not text:
|
444 |
+
return text
|
445 |
+
|
446 |
+
# Fix double spaces (human-like error)
|
447 |
+
text = re.sub(r'\s{2,}', ' ', text)
|
448 |
+
|
449 |
+
# Fix space before punctuation (common error)
|
450 |
+
text = re.sub(r'\s+([.,!?;:])', r'\1', text)
|
451 |
+
|
452 |
+
# Fix missing space after punctuation (human-like)
|
453 |
+
text = re.sub(r'([.,!?])([A-Z])', r'\1 \2', text)
|
454 |
+
|
455 |
+
# Fix accidental double punctuation
|
456 |
+
text = re.sub(r'([.!?])\1+', r'\1', text)
|
457 |
+
|
458 |
+
# Fix "i" capitalization (common human error to fix)
|
459 |
+
text = re.sub(r'\bi\b', 'I', text)
|
460 |
+
|
461 |
+
return text
|
462 |
+
|
463 |
+
def preserve_natural_variations(self, text):
|
464 |
+
"""Keep some natural human-like variations"""
|
465 |
+
# Don't fix everything - leave some variety
|
466 |
+
# Only fix if really broken
|
467 |
+
if text.count('.') == 0 and len(text.split()) > 20:
|
468 |
+
# Long text with no periods - needs fixing
|
469 |
+
words = text.split()
|
470 |
+
# Add periods every 15-25 words naturally (more variation)
|
471 |
+
new_text = []
|
472 |
+
for i, word in enumerate(words):
|
473 |
+
new_text.append(word)
|
474 |
+
if i > 0 and i % random.randint(12, 25) == 0:
|
475 |
+
if word[-1] not in '.!?,;:':
|
476 |
+
new_text[-1] = word + '.'
|
477 |
+
# Capitalize next word if it's not an acronym
|
478 |
+
if i + 1 < len(words) and words[i + 1][0].islower():
|
479 |
+
# Check if it's not likely an acronym
|
480 |
+
if not words[i + 1].isupper():
|
481 |
+
words[i + 1] = words[i + 1][0].upper() + words[i + 1][1:]
|
482 |
+
text = ' '.join(new_text)
|
483 |
+
|
484 |
+
return text
|
485 |
+
|
486 |
+
def smart_fix(self, text):
|
487 |
+
"""Apply minimal fixes to maintain human-like quality"""
|
488 |
+
# Apply fixes in order of importance
|
489 |
+
text = self.fix_basic_punctuation_errors(text)
|
490 |
+
text = self.fix_incomplete_sentences_only(text)
|
491 |
+
text = self.preserve_natural_variations(text)
|
492 |
+
|
493 |
+
return text
|
494 |
+
|
495 |
+
class EnhancedDipperHumanizer:
|
496 |
+
def __init__(self):
|
497 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
498 |
+
print(f"Using device: {self.device}")
|
499 |
+
|
500 |
+
# Clear GPU cache
|
501 |
+
if torch.cuda.is_available():
|
502 |
+
torch.cuda.empty_cache()
|
503 |
+
|
504 |
+
# Initialize grammar fixer
|
505 |
+
self.grammar_fixer = SelectiveGrammarFixer()
|
506 |
+
|
507 |
+
# Try to load spaCy if available
|
508 |
+
self.nlp = None
|
509 |
+
self.use_spacy = False
|
510 |
+
if SPACY_AVAILABLE:
|
511 |
+
try:
|
512 |
+
self.nlp = spacy.load("en_core_web_sm")
|
513 |
+
self.use_spacy = True
|
514 |
+
print("spaCy loaded successfully")
|
515 |
+
except:
|
516 |
+
print("spaCy model not found, using NLTK for sentence splitting")
|
517 |
+
|
518 |
+
try:
|
519 |
+
# Load Dipper paraphraser WITHOUT 8-bit quantization for better performance
|
520 |
+
print("Loading Dipper paraphraser model...")
|
521 |
+
self.tokenizer = T5Tokenizer.from_pretrained('google/t5-v1_1-xxl')
|
522 |
+
self.model = T5ForConditionalGeneration.from_pretrained(
|
523 |
+
"kalpeshk2011/dipper-paraphraser-xxl",
|
524 |
+
device_map="auto", # This will distribute across 4xL40S automatically
|
525 |
+
torch_dtype=torch.float16,
|
526 |
+
low_cpu_mem_usage=True
|
527 |
+
)
|
528 |
+
print("Dipper model loaded successfully!")
|
529 |
+
self.is_dipper = True
|
530 |
+
|
531 |
+
except Exception as e:
|
532 |
+
print(f"Error loading Dipper model: {str(e)}")
|
533 |
+
print("Falling back to Flan-T5-XL...")
|
534 |
+
self.is_dipper = False
|
535 |
+
|
536 |
+
# Fallback to Flan-T5-XL
|
537 |
+
try:
|
538 |
+
self.model = T5ForConditionalGeneration.from_pretrained(
|
539 |
+
"google/flan-t5-xl",
|
540 |
+
torch_dtype=torch.float16,
|
541 |
+
low_cpu_mem_usage=True,
|
542 |
+
device_map="auto"
|
543 |
+
)
|
544 |
+
self.tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xl")
|
545 |
+
print("Loaded Flan-T5-XL as fallback")
|
546 |
+
except:
|
547 |
+
raise Exception("Could not load any model. Please check your system resources.")
|
548 |
+
|
549 |
+
# Load BART as secondary model
|
550 |
+
try:
|
551 |
+
print("Loading BART model for additional variation...")
|
552 |
+
self.bart_model = AutoModelForSeq2SeqLM.from_pretrained(
|
553 |
+
"eugenesiow/bart-paraphrase",
|
554 |
+
torch_dtype=torch.float16,
|
555 |
+
device_map="auto" # Distribute across GPUs
|
556 |
+
)
|
557 |
+
self.bart_tokenizer = AutoTokenizer.from_pretrained("eugenesiow/bart-paraphrase")
|
558 |
+
self.use_bart = True
|
559 |
+
print("BART model loaded successfully")
|
560 |
+
except:
|
561 |
+
print("BART model not available")
|
562 |
+
self.use_bart = False
|
563 |
+
|
564 |
+
def preserve_keywords(self, text, keywords):
|
565 |
+
"""Mark keywords to preserve them during paraphrasing"""
|
566 |
+
if not keywords:
|
567 |
+
return text, {}
|
568 |
+
|
569 |
+
# Create a mapping of placeholders to keywords
|
570 |
+
keyword_map = {}
|
571 |
+
modified_text = text
|
572 |
+
|
573 |
+
# Sort keywords by length (longest first) to avoid partial replacements
|
574 |
+
sorted_keywords = sorted(keywords, key=len, reverse=True)
|
575 |
+
|
576 |
+
for i, keyword in enumerate(sorted_keywords):
|
577 |
+
# Use unique markers that won't be confused
|
578 |
+
placeholder = f"__KW{i:03d}__" # e.g., __KW001__
|
579 |
+
|
580 |
+
# Find all occurrences of the keyword (case-insensitive)
|
581 |
+
pattern = r'\b' + re.escape(keyword) + r'\b'
|
582 |
+
matches = list(re.finditer(pattern, modified_text, flags=re.IGNORECASE))
|
583 |
+
|
584 |
+
if matches:
|
585 |
+
# Replace all occurrences with the placeholder
|
586 |
+
for match in reversed(matches): # Reverse to maintain positions
|
587 |
+
original_keyword = match.group(0)
|
588 |
+
start, end = match.span()
|
589 |
+
modified_text = modified_text[:start] + placeholder + modified_text[end:]
|
590 |
+
# Store the original case version
|
591 |
+
keyword_map[placeholder] = original_keyword
|
592 |
+
|
593 |
+
return modified_text, keyword_map
|
594 |
+
|
595 |
+
def restore_keywords_robust(self, text, keyword_map):
|
596 |
+
"""Restore keywords with more flexible pattern matching"""
|
597 |
+
if not keyword_map:
|
598 |
+
return text
|
599 |
+
|
600 |
+
restored_text = text
|
601 |
+
|
602 |
+
# Debug: print what we're working with
|
603 |
+
print(f"Restoring keywords in text: {restored_text[:100]}...")
|
604 |
+
print(f"Keyword map: {keyword_map}")
|
605 |
+
|
606 |
+
# First pass: Direct placeholder replacement
|
607 |
+
for placeholder, keyword in keyword_map.items():
|
608 |
+
if placeholder in restored_text:
|
609 |
+
print(f"Found exact placeholder {placeholder}, replacing with {keyword}")
|
610 |
+
restored_text = restored_text.replace(placeholder, keyword)
|
611 |
+
|
612 |
+
# Second pass: Handle any mangled placeholders
|
613 |
+
# The model might alter placeholders in various ways
|
614 |
+
for placeholder, keyword in keyword_map.items():
|
615 |
+
# Extract the number from placeholder
|
616 |
+
match = re.search(r'__KW(\d+)__', placeholder)
|
617 |
+
if match:
|
618 |
+
num = match.group(1)
|
619 |
+
|
620 |
+
# Various patterns the model might create
|
621 |
+
patterns = [
|
622 |
+
f'__KW{num}__',
|
623 |
+
f'__ KW{num}__',
|
624 |
+
f'__KW {num}__',
|
625 |
+
f'__ KW {num} __',
|
626 |
+
f'_KW{num}_',
|
627 |
+
f'_kw{num}_', # lowercase with single underscore
|
628 |
+
f'KW{num}',
|
629 |
+
f'KW {num}',
|
630 |
+
f'__kw{num}__', # lowercase variant
|
631 |
+
f'__Kw{num}__', # mixed case
|
632 |
+
f'__ kw{num}__',
|
633 |
+
f'__KW{num}_', # missing underscore
|
634 |
+
f'_KW{num}__', # missing underscore
|
635 |
+
f'kw{num}', # just lowercase
|
636 |
+
f'___', # Sometimes model reduces to just underscores
|
637 |
+
f'____', # Various underscore patterns
|
638 |
+
f'_____',
|
639 |
+
f'__ __',
|
640 |
+
f'___ ___',
|
641 |
+
]
|
642 |
+
|
643 |
+
for pattern in patterns:
|
644 |
+
if pattern in restored_text:
|
645 |
+
print(f"Found pattern '{pattern}', replacing with {keyword}")
|
646 |
+
restored_text = restored_text.replace(pattern, keyword)
|
647 |
+
|
648 |
+
# Third pass: Use regex to catch any remaining variations
|
649 |
+
# This catches cases where the model might have added characters
|
650 |
+
for placeholder, keyword in keyword_map.items():
|
651 |
+
match = re.search(r'__KW(\d+)__', placeholder)
|
652 |
+
if match:
|
653 |
+
num = match.group(1)
|
654 |
+
# Regex to match various mangled versions including single underscore
|
655 |
+
regex_patterns = [
|
656 |
+
rf'_+\s*[Kk][Ww]\s*{num}\s*_*', # Any underscores, case insensitive
|
657 |
+
rf'[Kk][Ww]\s*{num}(?!\d)', # KW followed by the number
|
658 |
+
rf'__?\s*[Kk][Ww]\s*{num}\s*__?', # Optional underscores
|
659 |
+
rf'_[Kk][Ww]{num}_', # Single underscore version
|
660 |
+
rf'_+\s*{num}\s*_*', # Just the number with underscores
|
661 |
+
rf'__+', # Multiple underscores (fallback)
|
662 |
+
]
|
663 |
+
|
664 |
+
for pattern in regex_patterns:
|
665 |
+
matches = list(re.finditer(pattern, restored_text, flags=re.IGNORECASE))
|
666 |
+
if matches:
|
667 |
+
print(f"Found regex pattern '{pattern}' {len(matches)} times")
|
668 |
+
# Replace from end to beginning to maintain positions
|
669 |
+
for match in reversed(matches):
|
670 |
+
restored_text = restored_text[:match.start()] + keyword + restored_text[match.end():]
|
671 |
+
|
672 |
+
# Fourth pass: Look for common patterns where model mangles placeholders
|
673 |
+
# Sometimes the model turns __KW002__ into things like "___ University" or "___ College__"
|
674 |
+
underscore_patterns = [
|
675 |
+
(r'___+\s*[Uu]niversity', keyword + ' University') if 'universit' in keyword.lower() else None,
|
676 |
+
(r'___+\s*[Cc]ollege__?', keyword + ' College') if 'college' in keyword.lower() else None,
|
677 |
+
(r'___+\s*[Ss]chool', keyword + ' School') if 'school' in keyword.lower() else None,
|
678 |
+
(r'___+', keyword), # Generic underscore replacement
|
679 |
+
]
|
680 |
+
|
681 |
+
for pattern_tuple in underscore_patterns:
|
682 |
+
if pattern_tuple:
|
683 |
+
pattern, replacement = pattern_tuple
|
684 |
+
if re.search(pattern, restored_text):
|
685 |
+
print(f"Found underscore pattern '{pattern}', replacing with {replacement}")
|
686 |
+
restored_text = re.sub(pattern, replacement, restored_text)
|
687 |
+
|
688 |
+
# Final safety check: Look for any remaining placeholder-like patterns
|
689 |
+
remaining_underscores = re.findall(r'_{2,}', restored_text)
|
690 |
+
if remaining_underscores:
|
691 |
+
print(f"Warning: Found remaining underscore patterns: {remaining_underscores}")
|
692 |
+
# If we still have multiple underscores and we have keywords, do a simple replacement
|
693 |
+
# This is aggressive but necessary when model completely mangles placeholders
|
694 |
+
if '___' in restored_text and keyword_map:
|
695 |
+
# Replace the first occurrence of multiple underscores with each keyword
|
696 |
+
for placeholder, keyword in keyword_map.items():
|
697 |
+
if '___' in restored_text:
|
698 |
+
restored_text = restored_text.replace('___', keyword, 1)
|
699 |
+
|
700 |
+
# Log final result
|
701 |
+
print(f"Final restored text: {restored_text[:100]}...")
|
702 |
+
|
703 |
+
return restored_text
|
704 |
+
|
705 |
+
def should_skip_element(self, element, text):
|
706 |
+
"""Determine if an element should be skipped from paraphrasing"""
|
707 |
+
if not text or len(text.strip()) < 3:
|
708 |
+
return True
|
709 |
+
|
710 |
+
# Skip JavaScript code inside script tags
|
711 |
+
parent = element.parent
|
712 |
+
if parent and parent.name in ['script', 'style', 'noscript']:
|
713 |
+
return True
|
714 |
+
|
715 |
+
# Skip headings (h1-h6)
|
716 |
+
if parent and parent.name in ['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'title']:
|
717 |
+
return True
|
718 |
+
|
719 |
+
# Skip content inside <strong> and <b> tags
|
720 |
+
if parent and parent.name in ['strong', 'b']:
|
721 |
+
return True
|
722 |
+
|
723 |
+
# Skip table content
|
724 |
+
if parent and (parent.name in ['td', 'th'] or any(p.name == 'table' for p in parent.parents)):
|
725 |
+
return True
|
726 |
+
|
727 |
+
# Special handling for content inside tables
|
728 |
+
# Skip if it's inside strong/b/h1-h6 tags AND also inside a table
|
729 |
+
if parent:
|
730 |
+
# Check if we're inside a table
|
731 |
+
is_in_table = any(p.name == 'table' for p in parent.parents)
|
732 |
+
if is_in_table:
|
733 |
+
# If we're in a table, skip any text that's inside formatting tags
|
734 |
+
if parent.name in ['strong', 'b', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'em', 'i']:
|
735 |
+
return True
|
736 |
+
# Also check if parent's parent is a formatting tag
|
737 |
+
if parent.parent and parent.parent.name in ['strong', 'b', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6']:
|
738 |
+
return True
|
739 |
+
|
740 |
+
# Skip table of contents
|
741 |
+
if parent:
|
742 |
+
parent_text = str(parent).lower()
|
743 |
+
if any(toc in parent_text for toc in ['table of contents', 'toc-', 'contents']):
|
744 |
+
return True
|
745 |
+
|
746 |
+
# Skip CTAs and buttons
|
747 |
+
if parent and parent.name in ['button', 'a']:
|
748 |
+
return True
|
749 |
+
|
750 |
+
# Skip if parent has onclick or other event handlers
|
751 |
+
if parent and parent.attrs:
|
752 |
+
event_handlers = ['onclick', 'onchange', 'onsubmit', 'onload', 'onmouseover', 'onmouseout']
|
753 |
+
if any(handler in parent.attrs for handler in event_handlers):
|
754 |
+
return True
|
755 |
+
|
756 |
+
# Special check for testimonial cards - check up to 3 levels of ancestors
|
757 |
+
if parent:
|
758 |
+
ancestors_to_check = []
|
759 |
+
current = parent
|
760 |
+
for _ in range(3): # Check up to 3 levels up
|
761 |
+
if current:
|
762 |
+
ancestors_to_check.append(current)
|
763 |
+
current = current.parent
|
764 |
+
|
765 |
+
# Check if any ancestor has testimonial-card class
|
766 |
+
for ancestor in ancestors_to_check:
|
767 |
+
if ancestor and ancestor.get('class'):
|
768 |
+
classes = ancestor.get('class', [])
|
769 |
+
if isinstance(classes, list):
|
770 |
+
if any('testimonial-card' in str(cls) for cls in classes):
|
771 |
+
return True
|
772 |
+
elif isinstance(classes, str) and 'testimonial-card' in classes:
|
773 |
+
return True
|
774 |
+
|
775 |
+
# Skip if IMMEDIATE parent or element itself has skip-worthy classes/IDs
|
776 |
+
skip_indicators = [
|
777 |
+
'cta-', 'button', 'btn', 'heading', 'title', 'caption',
|
778 |
+
'toc-', 'contents', 'quiz', 'tip', 'note', 'alert',
|
779 |
+
'warning', 'info', 'success', 'error', 'code', 'pre',
|
780 |
+
'stats-grid', 'testimonial-card', 'highlight-box',
|
781 |
+
'cta-box', 'quiz-container', 'news-box', 'contact-form',
|
782 |
+
'faq-question', 'sidebar', 'widget', 'banner', 'news-section',
|
783 |
+
'author-intro', 'testimonial', 'review', 'feedback',
|
784 |
+
'floating-', 'stat-', 'progress-', 'option', 'results',
|
785 |
+
'question-container', 'quiz-', 'faq-',
|
786 |
+
'comparision-tables', 'process-flowcharts', 'infographics', 'cost-breakdown'
|
787 |
+
]
|
788 |
+
|
789 |
+
# Check only immediate parent and grandparent (not all ancestors)
|
790 |
+
elements_to_check = [parent]
|
791 |
+
if parent and parent.parent:
|
792 |
+
elements_to_check.append(parent.parent)
|
793 |
+
|
794 |
+
for elem in elements_to_check:
|
795 |
+
if not elem:
|
796 |
+
continue
|
797 |
+
|
798 |
+
# Check element's class
|
799 |
+
elem_class = elem.get('class', [])
|
800 |
+
if isinstance(elem_class, list):
|
801 |
+
class_str = ' '.join(str(cls).lower() for cls in elem_class)
|
802 |
+
if any(indicator in class_str for indicator in skip_indicators):
|
803 |
+
return True
|
804 |
+
|
805 |
+
# Check element's ID
|
806 |
+
elem_id = elem.get('id', '')
|
807 |
+
if any(indicator in str(elem_id).lower() for indicator in skip_indicators):
|
808 |
+
return True
|
809 |
+
|
810 |
+
# Skip short phrases that might be UI elements
|
811 |
+
word_count = len(text.split())
|
812 |
+
if word_count <= 5:
|
813 |
+
ui_patterns = [
|
814 |
+
'click', 'download', 'learn more', 'read more', 'sign up',
|
815 |
+
'get started', 'try now', 'buy now', 'next', 'previous',
|
816 |
+
'back', 'continue', 'submit', 'cancel', 'get now', 'book your',
|
817 |
+
'check out:', 'see also:', 'related:', 'question', 'of'
|
818 |
+
]
|
819 |
+
if any(pattern in text.lower() for pattern in ui_patterns):
|
820 |
+
return True
|
821 |
+
|
822 |
+
# Skip very short content in styled containers
|
823 |
+
if parent and parent.name in ['div', 'section', 'aside', 'blockquote']:
|
824 |
+
style = parent.get('style', '')
|
825 |
+
if 'border' in style or 'background' in style:
|
826 |
+
if word_count <= 20:
|
827 |
+
# But don't skip if it's inside a paragraph
|
828 |
+
if not any(p.name == 'p' for p in parent.parents):
|
829 |
+
return True
|
830 |
+
|
831 |
+
return False
|
832 |
+
|
833 |
+
def is_likely_acronym_or_proper_noun(self, word):
|
834 |
+
"""Check if a word is likely an acronym or part of a proper noun"""
|
835 |
+
# Common acronyms and abbreviations
|
836 |
+
acronyms = {'MBA', 'CEO', 'USA', 'UK', 'GMAT', 'GRE', 'SAT', 'ACT', 'PhD', 'MD', 'IT', 'AI', 'ML'}
|
837 |
+
|
838 |
+
# Check if it's in our acronym list
|
839 |
+
if word.upper() in acronyms:
|
840 |
+
return True
|
841 |
+
|
842 |
+
# Check if it's all caps (likely acronym)
|
843 |
+
if word.isupper() and len(word) > 1:
|
844 |
+
return True
|
845 |
+
|
846 |
+
# Check if it follows patterns like "Edition", "Focus", etc. that often come after proper nouns
|
847 |
+
proper_noun_continuations = {
|
848 |
+
'Edition', 'Version', 'Series', 'Focus', 'System', 'Method', 'School',
|
849 |
+
'University', 'College', 'Institute', 'Academy', 'Center', 'Centre'
|
850 |
+
}
|
851 |
+
|
852 |
+
if word in proper_noun_continuations:
|
853 |
+
return True
|
854 |
+
|
855 |
+
return False
|
856 |
+
|
857 |
+
def clean_model_output_enhanced(self, text):
|
858 |
+
"""Enhanced cleaning that preserves more natural structure"""
|
859 |
+
if not text:
|
860 |
+
return ""
|
861 |
+
|
862 |
+
# Store original for fallback
|
863 |
+
original = text
|
864 |
+
|
865 |
+
# Remove ONLY clear model artifacts
|
866 |
+
text = re.sub(r'^lexical\s*=\s*\d+\s*,\s*order\s*=\s*\d+\s*', '', text, flags=re.IGNORECASE)
|
867 |
+
text = re.sub(r'<sent>\s*', '', text, flags=re.IGNORECASE)
|
868 |
+
text = re.sub(r'\s*</sent>', '', text, flags=re.IGNORECASE)
|
869 |
+
|
870 |
+
# Only remove clear prefixes
|
871 |
+
if text.lower().startswith('paraphrase:'):
|
872 |
+
text = text[11:].strip()
|
873 |
+
elif text.lower().startswith('rewrite:'):
|
874 |
+
text = text[8:].strip()
|
875 |
+
|
876 |
+
# Remove leading non-letter characters carefully
|
877 |
+
# IMPORTANT: Preserve keyword placeholders
|
878 |
+
if not re.match(r'^__KW\d+__', text):
|
879 |
+
# Only remove if it doesn't start with a placeholder
|
880 |
+
text = re.sub(r'^[^a-zA-Z_]+', '', text)
|
881 |
+
|
882 |
+
# If we accidentally removed too much, use original
|
883 |
+
if len(text) < len(original) * 0.5:
|
884 |
+
text = original
|
885 |
+
|
886 |
+
return text.strip()
|
887 |
+
|
888 |
+
def paraphrase_with_dipper(self, text, lex_diversity=60, order_diversity=20, keywords=None):
|
889 |
+
"""Paraphrase text using Dipper model with sentence-level processing"""
|
890 |
+
if not text or len(text.strip()) < 3:
|
891 |
+
return text
|
892 |
+
|
893 |
+
# Preserve keywords
|
894 |
+
text_with_placeholders, keyword_map = self.preserve_keywords(text, keywords)
|
895 |
+
|
896 |
+
# Add debug logging
|
897 |
+
if keyword_map:
|
898 |
+
print(f"Debug: Created keyword map: {keyword_map}")
|
899 |
+
print(f"Debug: Text with placeholders: {text_with_placeholders[:100]}...")
|
900 |
+
|
901 |
+
# Split into sentences for better control
|
902 |
+
sentences = self.split_into_sentences_advanced(text_with_placeholders)
|
903 |
+
paraphrased_sentences = []
|
904 |
+
|
905 |
+
for sentence in sentences:
|
906 |
+
if len(sentence.strip()) < 3:
|
907 |
+
paraphrased_sentences.append(sentence)
|
908 |
+
continue
|
909 |
+
|
910 |
+
try:
|
911 |
+
# Adjust diversity based on presence of keywords
|
912 |
+
has_keywords = any(placeholder in sentence for placeholder in keyword_map.keys())
|
913 |
+
if has_keywords:
|
914 |
+
# Use MODERATE diversity when keywords are present to avoid mangling
|
915 |
+
lex_diversity = 40 # Reduced from 70
|
916 |
+
order_diversity = 10 # Reduced from 20
|
917 |
+
elif len(sentence.split()) < 10:
|
918 |
+
lex_diversity = 70 # Reduced from 80
|
919 |
+
order_diversity = 25 # Reduced from 30
|
920 |
+
else:
|
921 |
+
lex_diversity = 85 # Slightly reduced from 90
|
922 |
+
order_diversity = 35 # Slightly reduced from 40
|
923 |
+
|
924 |
+
lex_code = int(100 - lex_diversity)
|
925 |
+
order_code = int(100 - order_diversity)
|
926 |
+
|
927 |
+
# Format input for Dipper
|
928 |
+
if self.is_dipper:
|
929 |
+
input_text = f"lexical = {lex_code}, order = {order_code} <sent> {sentence} </sent>"
|
930 |
+
else:
|
931 |
+
input_text = f"paraphrase: {sentence}"
|
932 |
+
|
933 |
+
# Tokenize
|
934 |
+
inputs = self.tokenizer(
|
935 |
+
input_text,
|
936 |
+
return_tensors="pt",
|
937 |
+
max_length=512,
|
938 |
+
truncation=True,
|
939 |
+
padding=True
|
940 |
+
)
|
941 |
+
|
942 |
+
# Move to device
|
943 |
+
if hasattr(self.model, 'device_map') and self.model.device_map:
|
944 |
+
device = next(iter(self.model.device_map.values()))
|
945 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
946 |
+
else:
|
947 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
948 |
+
|
949 |
+
# Generate with appropriate variation based on keywords
|
950 |
+
original_length = len(sentence.split())
|
951 |
+
max_new_length = int(original_length * 1.3) # Reduced from 1.4
|
952 |
+
|
953 |
+
# Adjust temperature based on keywords
|
954 |
+
temp = 0.9 if has_keywords else 1.1 # Lower temp for keywords
|
955 |
+
top_p_val = 0.95 if has_keywords else 0.9
|
956 |
+
|
957 |
+
with torch.no_grad():
|
958 |
+
outputs = self.model.generate(
|
959 |
+
**inputs,
|
960 |
+
max_length=max_new_length + 20,
|
961 |
+
min_length=max(5, int(original_length * 0.7)),
|
962 |
+
do_sample=True,
|
963 |
+
top_p=top_p_val,
|
964 |
+
temperature=temp,
|
965 |
+
no_repeat_ngram_size=3,
|
966 |
+
num_beams=3 if has_keywords else 2, # More beams for stability with keywords
|
967 |
+
early_stopping=True
|
968 |
+
)
|
969 |
+
|
970 |
+
# Decode
|
971 |
+
paraphrased = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
972 |
+
|
973 |
+
# Clean model artifacts
|
974 |
+
paraphrased = self.clean_model_output_enhanced(paraphrased)
|
975 |
+
|
976 |
+
# Fix incomplete sentences
|
977 |
+
paraphrased = self.fix_incomplete_sentence_smart(paraphrased, sentence)
|
978 |
+
|
979 |
+
# Ensure reasonable length
|
980 |
+
if len(paraphrased.split()) > max_new_length:
|
981 |
+
paraphrased = ' '.join(paraphrased.split()[:max_new_length])
|
982 |
+
|
983 |
+
paraphrased_sentences.append(paraphrased)
|
984 |
+
|
985 |
+
except Exception as e:
|
986 |
+
print(f"Error paraphrasing sentence: {str(e)}")
|
987 |
+
paraphrased_sentences.append(sentence)
|
988 |
+
|
989 |
+
# Join sentences back
|
990 |
+
result = ' '.join(paraphrased_sentences)
|
991 |
+
|
992 |
+
# Debug before restoration
|
993 |
+
if keyword_map:
|
994 |
+
print(f"Debug: Result before restoration: {result[:100]}...")
|
995 |
+
print(f"Debug: Checking for placeholders...")
|
996 |
+
for placeholder in keyword_map.keys():
|
997 |
+
if placeholder in result:
|
998 |
+
print(f"Debug: Found placeholder {placeholder} in result")
|
999 |
+
else:
|
1000 |
+
# Check for mangled versions
|
1001 |
+
if '___' in result:
|
1002 |
+
print(f"Debug: Found underscores ___ instead of {placeholder}")
|
1003 |
+
|
1004 |
+
# Restore keywords AFTER joining all sentences
|
1005 |
+
result = self.restore_keywords_robust(result, keyword_map)
|
1006 |
+
|
1007 |
+
# Debug after restoration
|
1008 |
+
if keyword_map:
|
1009 |
+
print(f"Debug: Result after restoration: {result[:100]}...")
|
1010 |
+
|
1011 |
+
# Apply minimal grammar fixes with human variations
|
1012 |
+
result = self.grammar_fixer.smart_fix(result)
|
1013 |
+
|
1014 |
+
return result
|
1015 |
+
|
1016 |
+
def fix_incomplete_sentence_smart(self, generated, original):
|
1017 |
+
"""Smarter sentence completion that maintains natural flow"""
|
1018 |
+
if not generated or not generated.strip():
|
1019 |
+
return original
|
1020 |
+
|
1021 |
+
generated = generated.strip()
|
1022 |
+
|
1023 |
+
# Check if the sentence seems complete semantically
|
1024 |
+
words = generated.split()
|
1025 |
+
if len(words) >= 3:
|
1026 |
+
# Check if last word is a good ending word
|
1027 |
+
last_word = words[-1].lower().rstrip('.,!?;:')
|
1028 |
+
|
1029 |
+
# Common ending words that might not need punctuation fix
|
1030 |
+
ending_words = {
|
1031 |
+
'too', 'also', 'well', 'though', 'however',
|
1032 |
+
'furthermore', 'moreover', 'indeed', 'anyway',
|
1033 |
+
'regardless', 'nonetheless', 'therefore', 'thus'
|
1034 |
+
}
|
1035 |
+
|
1036 |
+
# If it ends with a good word, just add appropriate punctuation
|
1037 |
+
if last_word in ending_words:
|
1038 |
+
if generated[-1] not in '.!?':
|
1039 |
+
generated += '.'
|
1040 |
+
return generated
|
1041 |
+
|
1042 |
+
# Check for cut-off patterns
|
1043 |
+
if len(words) > 0:
|
1044 |
+
last_word = words[-1]
|
1045 |
+
|
1046 |
+
# Remove if it's clearly cut off (1-2 chars, no vowels)
|
1047 |
+
# But don't remove valid short words like "is", "of", "to", etc.
|
1048 |
+
short_valid_words = {'is', 'of', 'to', 'in', 'on', 'at', 'by', 'or', 'if', 'so', 'up', 'no', 'we', 'he', 'me', 'be', 'do', 'go'}
|
1049 |
+
if (len(last_word) <= 2 and
|
1050 |
+
last_word.lower() not in short_valid_words and
|
1051 |
+
not any(c in 'aeiouAEIOU' for c in last_word)):
|
1052 |
+
words = words[:-1]
|
1053 |
+
generated = ' '.join(words)
|
1054 |
+
|
1055 |
+
# Add ending punctuation based on context
|
1056 |
+
if generated and generated[-1] not in '.!?:,;':
|
1057 |
+
# Check original ending
|
1058 |
+
orig_stripped = original.strip()
|
1059 |
+
if orig_stripped.endswith('?'):
|
1060 |
+
# Check if generated seems like a question
|
1061 |
+
question_words = ['what', 'why', 'how', 'when', 'where', 'who', 'which', 'is', 'are', 'do', 'does', 'can', 'could', 'would', 'should']
|
1062 |
+
first_word = generated.split()[0].lower() if generated.split() else ''
|
1063 |
+
if first_word in question_words:
|
1064 |
+
generated += '?'
|
1065 |
+
else:
|
1066 |
+
generated += '.'
|
1067 |
+
elif orig_stripped.endswith('!'):
|
1068 |
+
# Check if generated seems exclamatory
|
1069 |
+
exclaim_words = ['amazing', 'incredible', 'fantastic', 'terrible', 'awful', 'wonderful', 'excellent']
|
1070 |
+
if any(word in generated.lower() for word in exclaim_words):
|
1071 |
+
generated += '!'
|
1072 |
+
else:
|
1073 |
+
generated += '.'
|
1074 |
+
elif orig_stripped.endswith(':'):
|
1075 |
+
generated += ':'
|
1076 |
+
else:
|
1077 |
+
generated += '.'
|
1078 |
+
|
1079 |
+
# Ensure first letter is capitalized ONLY if it's sentence start
|
1080 |
+
# Don't capitalize words like "iPhone" or "eBay" or placeholders
|
1081 |
+
if generated and generated[0].islower() and not self.is_likely_acronym_or_proper_noun(generated.split()[0]) and not generated.startswith('__KW'):
|
1082 |
+
generated = generated[0].upper() + generated[1:]
|
1083 |
+
|
1084 |
+
return generated
|
1085 |
+
|
1086 |
+
def split_into_sentences_advanced(self, text):
|
1087 |
+
"""Advanced sentence splitting using spaCy or NLTK"""
|
1088 |
+
if self.use_spacy and self.nlp:
|
1089 |
+
doc = self.nlp(text)
|
1090 |
+
sentences = [sent.text.strip() for sent in doc.sents]
|
1091 |
+
else:
|
1092 |
+
# Fallback to NLTK
|
1093 |
+
try:
|
1094 |
+
sentences = sent_tokenize(text)
|
1095 |
+
except:
|
1096 |
+
# Final fallback to regex
|
1097 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
1098 |
+
|
1099 |
+
# Clean up sentences
|
1100 |
+
return [s for s in sentences if s and len(s.strip()) > 0]
|
1101 |
+
|
1102 |
+
def paraphrase_with_bart(self, text, keywords=None):
|
1103 |
+
"""Additional paraphrasing with BART for more variation"""
|
1104 |
+
if not self.use_bart or not text or len(text.strip()) < 3:
|
1105 |
+
return text
|
1106 |
+
|
1107 |
+
try:
|
1108 |
+
# Preserve keywords
|
1109 |
+
text_with_placeholders, keyword_map = self.preserve_keywords(text, keywords)
|
1110 |
+
|
1111 |
+
# Process in smaller chunks for BART
|
1112 |
+
sentences = self.split_into_sentences_advanced(text_with_placeholders)
|
1113 |
+
paraphrased_sentences = []
|
1114 |
+
|
1115 |
+
for sentence in sentences:
|
1116 |
+
if len(sentence.split()) < 5:
|
1117 |
+
paraphrased_sentences.append(sentence)
|
1118 |
+
continue
|
1119 |
+
|
1120 |
+
inputs = self.bart_tokenizer(
|
1121 |
+
sentence,
|
1122 |
+
return_tensors='pt',
|
1123 |
+
max_length=128,
|
1124 |
+
truncation=True
|
1125 |
+
)
|
1126 |
+
|
1127 |
+
# Move to appropriate device
|
1128 |
+
if hasattr(self.bart_model, 'device_map') and self.bart_model.device_map:
|
1129 |
+
device = next(iter(self.bart_model.device_map.values()))
|
1130 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
1131 |
+
else:
|
1132 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
1133 |
+
|
1134 |
+
original_length = len(sentence.split())
|
1135 |
+
|
1136 |
+
with torch.no_grad():
|
1137 |
+
outputs = self.bart_model.generate(
|
1138 |
+
**inputs,
|
1139 |
+
max_length=int(original_length * 1.4) + 10,
|
1140 |
+
min_length=max(5, int(original_length * 0.6)),
|
1141 |
+
num_beams=2,
|
1142 |
+
temperature=1.1, # Higher temperature
|
1143 |
+
do_sample=True,
|
1144 |
+
top_p=0.9,
|
1145 |
+
early_stopping=True
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
paraphrased = self.bart_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
1149 |
+
|
1150 |
+
# Fix incomplete sentences
|
1151 |
+
paraphrased = self.fix_incomplete_sentence_smart(paraphrased, sentence)
|
1152 |
+
|
1153 |
+
paraphrased_sentences.append(paraphrased)
|
1154 |
+
|
1155 |
+
result = ' '.join(paraphrased_sentences)
|
1156 |
+
|
1157 |
+
# Restore keywords AFTER joining all sentences
|
1158 |
+
result = self.restore_keywords_robust(result, keyword_map)
|
1159 |
+
|
1160 |
+
# Apply minimal grammar fixes
|
1161 |
+
result = self.grammar_fixer.smart_fix(result)
|
1162 |
+
|
1163 |
+
return result
|
1164 |
+
|
1165 |
+
except Exception as e:
|
1166 |
+
print(f"Error in BART paraphrasing: {str(e)}")
|
1167 |
+
return text
|
1168 |
+
|
1169 |
+
def apply_sentence_variation(self, text):
|
1170 |
+
"""Apply natural sentence structure variations - MORE AGGRESSIVE"""
|
1171 |
+
sentences = self.split_into_sentences_advanced(text)
|
1172 |
+
varied_sentences = []
|
1173 |
+
|
1174 |
+
for i, sentence in enumerate(sentences):
|
1175 |
+
# Skip empty sentences
|
1176 |
+
if not sentence.strip():
|
1177 |
+
continue
|
1178 |
+
|
1179 |
+
# MORE aggressive variations
|
1180 |
+
# Combine short sentences more often (50% chance)
|
1181 |
+
if (i < len(sentences) - 1 and
|
1182 |
+
len(sentence.split()) < 15 and
|
1183 |
+
len(sentences[i+1].split()) < 15 and
|
1184 |
+
random.random() < 0.5):
|
1185 |
+
|
1186 |
+
connectors = [', and', ', but', '; however,', '. Also,', '. Plus,', ', so', ', which means',
|
1187 |
+
' - and', ' - but', '; meanwhile,', '. That said,', ', yet', ' - though']
|
1188 |
+
connector = random.choice(connectors)
|
1189 |
+
|
1190 |
+
# Handle the next sentence properly
|
1191 |
+
next_sent = sentences[i+1].strip()
|
1192 |
+
if next_sent:
|
1193 |
+
combined = f"{sentence.rstrip('.')}{connector} {next_sent[0].lower()}{next_sent[1:]}"
|
1194 |
+
varied_sentences.append(combined)
|
1195 |
+
sentences[i+1] = "" # Mark as processed
|
1196 |
+
|
1197 |
+
elif sentence: # Only process non-empty sentences
|
1198 |
+
# Split very long sentences more aggressively
|
1199 |
+
if len(sentence.split()) > 18 and ',' in sentence:
|
1200 |
+
parts = sentence.split(', ', 1)
|
1201 |
+
if len(parts) == 2 and len(parts[1].split()) > 6:
|
1202 |
+
# 70% chance to split
|
1203 |
+
if random.random() < 0.7:
|
1204 |
+
varied_sentences.append(parts[0] + '.')
|
1205 |
+
# Ensure second part starts with capital
|
1206 |
+
if parts[1]:
|
1207 |
+
varied_sentences.append(parts[1][0].upper() + parts[1][1:])
|
1208 |
+
else:
|
1209 |
+
varied_sentences.append(sentence)
|
1210 |
+
else:
|
1211 |
+
varied_sentences.append(sentence)
|
1212 |
+
else:
|
1213 |
+
# Add natural variations more often (35% chance)
|
1214 |
+
if i > 0 and random.random() < 0.35:
|
1215 |
+
# Sometimes add a transition
|
1216 |
+
transitions = ['Furthermore, ', 'Additionally, ', 'Moreover, ', 'Also, ',
|
1217 |
+
'Besides, ', 'What\'s more, ', 'In addition, ', 'Not only that, ',
|
1218 |
+
'To add to that, ', 'On top of that, ', 'Beyond that, ']
|
1219 |
+
transition = random.choice(transitions)
|
1220 |
+
if sentence[0].isupper():
|
1221 |
+
sentence = transition + sentence[0].lower() + sentence[1:]
|
1222 |
+
|
1223 |
+
# Add mid-sentence interruptions (10% chance)
|
1224 |
+
if random.random() < 0.1 and len(sentence.split()) > 12:
|
1225 |
+
interruptions = [
|
1226 |
+
" - and this is crucial - ",
|
1227 |
+
" - believe me - ",
|
1228 |
+
" - no kidding - ",
|
1229 |
+
" (and yes, I mean it) ",
|
1230 |
+
" - stay with me here - ",
|
1231 |
+
" - and I'm not exaggerating - "
|
1232 |
+
]
|
1233 |
+
words = sentence.split()
|
1234 |
+
pos = random.randint(len(words)//3, 2*len(words)//3)
|
1235 |
+
words.insert(pos, random.choice(interruptions))
|
1236 |
+
sentence = ' '.join(words)
|
1237 |
+
|
1238 |
+
varied_sentences.append(sentence)
|
1239 |
+
|
1240 |
+
# Post-process for additional human patterns
|
1241 |
+
result = ' '.join([s for s in varied_sentences if s])
|
1242 |
+
|
1243 |
+
# Add occasional fragments for human touch (5% chance)
|
1244 |
+
if random.random() < 0.05:
|
1245 |
+
fragments = [
|
1246 |
+
"Crazy, I know.",
|
1247 |
+
"Wild stuff.",
|
1248 |
+
"Makes you think.",
|
1249 |
+
"Pretty interesting.",
|
1250 |
+
"Go figure.",
|
1251 |
+
"Who knew?",
|
1252 |
+
"There you have it.",
|
1253 |
+
"Food for thought.",
|
1254 |
+
"Just saying.",
|
1255 |
+
"Worth considering."
|
1256 |
+
]
|
1257 |
+
sentences = result.split('. ')
|
1258 |
+
if len(sentences) > 3:
|
1259 |
+
insert_pos = random.randint(1, len(sentences)-1)
|
1260 |
+
sentences.insert(insert_pos, random.choice(fragments))
|
1261 |
+
result = '. '.join(sentences)
|
1262 |
+
|
1263 |
+
return result
|
1264 |
+
|
1265 |
+
def fix_punctuation(self, text):
|
1266 |
+
"""Comprehensive punctuation and formatting fixes"""
|
1267 |
+
if not text:
|
1268 |
+
return ""
|
1269 |
+
|
1270 |
+
# First, clean any remaining model artifacts
|
1271 |
+
text = self.clean_model_output_enhanced(text)
|
1272 |
+
|
1273 |
+
# Fix weird symbols and characters using safe replacements
|
1274 |
+
text = text.replace('<>', '') # Remove empty angle brackets
|
1275 |
+
|
1276 |
+
# Normalize quotes - use replace instead of regex for problematic characters
|
1277 |
+
text = text.replace('«', '"').replace('»', '"')
|
1278 |
+
text = text.replace('„', '"').replace('"', '"').replace('"', '"')
|
1279 |
+
text = text.replace(''', "'").replace(''', "'")
|
1280 |
+
text = text.replace('–', '-').replace('—', '-')
|
1281 |
+
|
1282 |
+
# Fix colon issues
|
1283 |
+
text = re.sub(r'\.:', ':', text) # Remove period before colon
|
1284 |
+
text = re.sub(r':\s*\.', ':', text) # Remove period after colon
|
1285 |
+
|
1286 |
+
# Fix basic spacing
|
1287 |
+
text = re.sub(r'\s+', ' ', text) # Multiple spaces to single
|
1288 |
+
text = re.sub(r'\s+([.,!?;:])', r'\1', text) # Remove space before punctuation
|
1289 |
+
text = re.sub(r'([.,!?;:])\s*([.,!?;:])', r'\1', text) # Remove double punctuation
|
1290 |
+
text = re.sub(r'([.!?])\s*\1+', r'\1', text) # Remove repeated punctuation
|
1291 |
+
|
1292 |
+
# Fix colons
|
1293 |
+
text = re.sub(r':\s*([.,!?])', ':', text) # Remove punctuation after colon
|
1294 |
+
text = re.sub(r'([.,!?])\s*:', ':', text) # Remove punctuation before colon
|
1295 |
+
text = re.sub(r':+', ':', text) # Multiple colons to one
|
1296 |
+
|
1297 |
+
# Fix quotes and parentheses
|
1298 |
+
text = re.sub(r'"\s*([^"]*?)\s*"', r'"\1"', text)
|
1299 |
+
text = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", text)
|
1300 |
+
text = re.sub(r'\(\s*([^)]*?)\s*\)', r'(\1)', text)
|
1301 |
+
|
1302 |
+
# Fix sentence capitalization more carefully
|
1303 |
+
# Split on ACTUAL sentence endings only
|
1304 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
1305 |
+
fixed_sentences = []
|
1306 |
+
|
1307 |
+
for i, sentence in enumerate(sentences):
|
1308 |
+
if not sentence:
|
1309 |
+
continue
|
1310 |
+
|
1311 |
+
# Only capitalize the first letter if it's actually lowercase
|
1312 |
+
# and not part of a special case (like iPhone, eBay, etc.)
|
1313 |
+
words = sentence.split()
|
1314 |
+
if words:
|
1315 |
+
first_word = words[0]
|
1316 |
+
# Check if it's not an acronym or proper noun that should stay lowercase
|
1317 |
+
if (first_word[0].islower() and
|
1318 |
+
not self.is_likely_acronym_or_proper_noun(first_word) and
|
1319 |
+
not first_word.startswith('__KW') and
|
1320 |
+
not first_word.startswith('_kw')):
|
1321 |
+
# Only capitalize if it's a regular word
|
1322 |
+
sentence = first_word[0].upper() + first_word[1:] + ' ' + ' '.join(words[1:])
|
1323 |
+
|
1324 |
+
fixed_sentences.append(sentence)
|
1325 |
+
|
1326 |
+
text = ' '.join(fixed_sentences)
|
1327 |
+
|
1328 |
+
# Fix common issues
|
1329 |
+
text = re.sub(r'\bi\b', 'I', text) # Capitalize 'I'
|
1330 |
+
text = re.sub(r'\.{2,}', '.', text) # Multiple periods to one
|
1331 |
+
text = re.sub(r',{2,}', ',', text) # Multiple commas to one
|
1332 |
+
text = re.sub(r'\s*,\s*,\s*', ', ', text) # Double commas with spaces
|
1333 |
+
|
1334 |
+
# Remove weird artifacts
|
1335 |
+
text = re.sub(r'\b(CHAPTER\s+[IVX]+|SECTION\s+\d+)\b[^\w]*', '', text, flags=re.IGNORECASE)
|
1336 |
+
|
1337 |
+
# Fix abbreviations
|
1338 |
+
text = re.sub(r'\betc\s*\.\s*\.', 'etc.', text)
|
1339 |
+
text = re.sub(r'\be\.g\s*\.\s*[,\s]', 'e.g., ', text)
|
1340 |
+
text = re.sub(r'\bi\.e\s*\.\s*[,\s]', 'i.e., ', text)
|
1341 |
+
|
1342 |
+
# Fix numbers with periods (like "1. " at start of lists)
|
1343 |
+
text = re.sub(r'(\d+)\.\s+', r'\1. ', text)
|
1344 |
+
|
1345 |
+
# Fix bold/strong tags punctuation
|
1346 |
+
text = self.fix_bold_punctuation(text)
|
1347 |
+
|
1348 |
+
# Clean up any remaining issues
|
1349 |
+
text = re.sub(r'\s+([.,!?;:])', r'\1', text) # Final space cleanup
|
1350 |
+
text = re.sub(r'([.,!?;:])\s{2,}', r'\1 ', text) # Fix multiple spaces after punctuation
|
1351 |
+
|
1352 |
+
# Ensure ending punctuation
|
1353 |
+
text = text.strip()
|
1354 |
+
if text and text[-1] not in '.!?':
|
1355 |
+
# Don't add period if it ends with colon (likely a list header)
|
1356 |
+
if not text.endswith(':'):
|
1357 |
+
text += '.'
|
1358 |
+
|
1359 |
+
return text
|
1360 |
+
|
1361 |
+
def fix_bold_punctuation(self, text):
|
1362 |
+
"""Fix punctuation issues around bold/strong tags"""
|
1363 |
+
# Check if this is likely a list item with colon pattern
|
1364 |
+
def is_list_item_with_colon(text):
|
1365 |
+
# Pattern: starts with or contains <strong>Text:</strong> or <b>Text:</b>
|
1366 |
+
list_pattern = r'^\s*(?:[-•*▪▫◦‣⁃]\s*)?<(?:strong|b)>[^<]+:</(?:strong|b)>'
|
1367 |
+
return bool(re.search(list_pattern, text))
|
1368 |
+
|
1369 |
+
# If it's a list item with colon, preserve the format
|
1370 |
+
if is_list_item_with_colon(text):
|
1371 |
+
# Just clean up spacing but preserve the colon inside bold
|
1372 |
+
text = re.sub(r'<(strong|b)>\s*([^:]+)\s*:\s*</\1>', r'<\1>\2:</\1>', text)
|
1373 |
+
return text
|
1374 |
+
|
1375 |
+
# Pattern to find bold/strong content
|
1376 |
+
bold_pattern = r'<(strong|b)>(.*?)</\1>'
|
1377 |
+
|
1378 |
+
def fix_bold_match(match):
|
1379 |
+
tag = match.group(1)
|
1380 |
+
content = match.group(2).strip()
|
1381 |
+
|
1382 |
+
if not content:
|
1383 |
+
return f'<{tag}></{tag}>'
|
1384 |
+
|
1385 |
+
# Check if this is a list header (contains colon at the end)
|
1386 |
+
if content.endswith(':'):
|
1387 |
+
# Preserve list headers with colons
|
1388 |
+
return f'<{tag}>{content}</{tag}>'
|
1389 |
+
|
1390 |
+
# Remove any periods at the start or end of bold content
|
1391 |
+
content = content.strip('.')
|
1392 |
+
|
1393 |
+
# Check if this bold text is at the start of a sentence
|
1394 |
+
# (preceded by nothing, or by '. ', '! ', '? ')
|
1395 |
+
start_pos = match.start()
|
1396 |
+
is_sentence_start = (start_pos == 0 or
|
1397 |
+
(start_pos > 2 and text[start_pos-2:start_pos] in ['. ', '! ', '? ', '\n\n']))
|
1398 |
+
|
1399 |
+
# Capitalize first letter if it's at sentence start
|
1400 |
+
if is_sentence_start and content and content[0].isalpha():
|
1401 |
+
content = content[0].upper() + content[1:]
|
1402 |
+
|
1403 |
+
return f'<{tag}>{content}</{tag}>'
|
1404 |
+
|
1405 |
+
# Fix bold/strong tags
|
1406 |
+
text = re.sub(bold_pattern, fix_bold_match, text)
|
1407 |
+
|
1408 |
+
# Fix spacing around bold/strong tags (but not for list items)
|
1409 |
+
if not is_list_item_with_colon(text):
|
1410 |
+
text = re.sub(r'\.\s*<(strong|b)>', r'. <\1>', text) # Period before bold
|
1411 |
+
text = re.sub(r'</(strong|b)>\s*\.', r'</\1>.', text) # Period after bold
|
1412 |
+
text = re.sub(r'([.!?])\s*<(strong|b)>', r'\1 <\2>', text) # Space after sentence end
|
1413 |
+
text = re.sub(r'</(strong|b)>\s+([a-z])', lambda m: f'</{m.group(1)}> {m.group(2)}', text) # Keep lowercase after bold if mid-sentence
|
1414 |
+
|
1415 |
+
# Remove duplicate periods around bold tags
|
1416 |
+
text = re.sub(r'\.\s*</(strong|b)>\s*\.', r'</\1>.', text)
|
1417 |
+
text = re.sub(r'\.\s*<(strong|b)>\s*\.', r'. <\1>', text)
|
1418 |
+
|
1419 |
+
# Fix cases where bold content ends a sentence
|
1420 |
+
# If bold is followed by a new sentence (capital letter), add period
|
1421 |
+
text = re.sub(r'</(strong|b)>\s+([A-Z])', r'</\1>. \2', text)
|
1422 |
+
|
1423 |
+
# Don't remove these for list items
|
1424 |
+
if not is_list_item_with_colon(text):
|
1425 |
+
text = re.sub(r'<(strong|b)>\s*:\s*</\1>', ':', text) # Remove empty bold colons
|
1426 |
+
text = re.sub(r'<(strong|b)>\s*\.\s*</\1>', '.', text) # Remove empty bold periods
|
1427 |
+
|
1428 |
+
return text
|
1429 |
+
|
1430 |
+
def extract_text_from_html(self, html_content):
|
1431 |
+
"""Extract text elements from HTML with skip logic"""
|
1432 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
1433 |
+
text_elements = []
|
1434 |
+
|
1435 |
+
# Get all text nodes using string instead of text (fixing deprecation)
|
1436 |
+
for element in soup.find_all(string=True):
|
1437 |
+
# Skip script, style, and noscript content completely
|
1438 |
+
if element.parent.name in ['script', 'style', 'noscript']:
|
1439 |
+
continue
|
1440 |
+
|
1441 |
+
text = element.strip()
|
1442 |
+
if text and not self.should_skip_element(element, text):
|
1443 |
+
text_elements.append({
|
1444 |
+
'text': text,
|
1445 |
+
'element': element
|
1446 |
+
})
|
1447 |
+
|
1448 |
+
return soup, text_elements
|
1449 |
+
|
1450 |
+
def validate_and_fix_html(self, html_text):
|
1451 |
+
"""Fix common HTML syntax errors after processing"""
|
1452 |
+
|
1453 |
+
# Fix DOCTYPE
|
1454 |
+
html_text = re.sub(r'<!\s*DOCTYPE', '<!DOCTYPE', html_text, flags=re.IGNORECASE)
|
1455 |
+
|
1456 |
+
# Fix spacing issues
|
1457 |
+
html_text = re.sub(r'>\s+<', '><', html_text) # Remove extra spaces between tags
|
1458 |
+
html_text = re.sub(r'\s+>', '>', html_text) # Remove spaces before closing >
|
1459 |
+
html_text = re.sub(r'<\s+', '<', html_text) # Remove spaces after opening <
|
1460 |
+
|
1461 |
+
# Fix common word errors that might occur during processing
|
1462 |
+
html_text = html_text.replace('down loaded', 'downloaded')
|
1463 |
+
html_text = html_text.replace('But your document', 'Your document')
|
1464 |
+
|
1465 |
+
return html_text
|
1466 |
+
|
1467 |
+
def wrap_keywords_in_paragraphs(self, soup, keywords):
|
1468 |
+
"""Wrap keywords with <strong> tags inside <p> tags only"""
|
1469 |
+
if not keywords:
|
1470 |
+
return
|
1471 |
+
|
1472 |
+
# Find all paragraph tags
|
1473 |
+
for p_tag in soup.find_all('p'):
|
1474 |
+
# Skip paragraphs that are inside special elements
|
1475 |
+
# Check if paragraph is inside any of these elements
|
1476 |
+
skip_parents = ['div.author-intro', 'div.cta-box', 'div.testimonial-card',
|
1477 |
+
'div.news-box', 'button', 'a', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6',
|
1478 |
+
'div.quiz-container', 'div.question-container', 'div.results']
|
1479 |
+
|
1480 |
+
# Check if this paragraph should be skipped
|
1481 |
+
should_skip = False
|
1482 |
+
for parent in p_tag.parents:
|
1483 |
+
# Check by class
|
1484 |
+
if parent.name == 'div' and parent.get('class'):
|
1485 |
+
classes = parent.get('class', [])
|
1486 |
+
if isinstance(classes, list):
|
1487 |
+
class_str = ' '.join(str(cls) for cls in classes)
|
1488 |
+
else:
|
1489 |
+
class_str = str(classes)
|
1490 |
+
|
1491 |
+
if any(skip_class in class_str for skip_class in
|
1492 |
+
['author-intro', 'cta-box', 'testimonial-card', 'news-box',
|
1493 |
+
'quiz-container', 'question-container', 'results', 'stats-grid',
|
1494 |
+
'toc-', 'comparison-tables']):
|
1495 |
+
should_skip = True
|
1496 |
+
break
|
1497 |
+
|
1498 |
+
# Check by tag name
|
1499 |
+
if parent.name in ['button', 'a', 'blockquote', 'details', 'summary']:
|
1500 |
+
should_skip = True
|
1501 |
+
break
|
1502 |
+
|
1503 |
+
if should_skip:
|
1504 |
+
continue
|
1505 |
+
|
1506 |
+
# Additional check: Skip if paragraph has specific classes
|
1507 |
+
p_classes = p_tag.get('class', [])
|
1508 |
+
if isinstance(p_classes, list):
|
1509 |
+
p_class_str = ' '.join(str(cls) for cls in p_classes)
|
1510 |
+
else:
|
1511 |
+
p_class_str = str(p_classes)
|
1512 |
+
|
1513 |
+
if any(skip_class in p_class_str for skip_class in ['testimonial-card', 'quiz-', 'stat-']):
|
1514 |
+
continue
|
1515 |
+
|
1516 |
+
# Process only if this is a regular content paragraph
|
1517 |
+
# Get all text nodes in this paragraph
|
1518 |
+
for text_node in p_tag.find_all(string=True):
|
1519 |
+
# Skip if already inside a strong or b tag
|
1520 |
+
if text_node.parent.name in ['strong', 'b', 'em', 'i', 'span', 'a']:
|
1521 |
+
continue
|
1522 |
+
|
1523 |
+
# Skip if the text node's immediate parent isn't the p tag
|
1524 |
+
# (to avoid nested elements)
|
1525 |
+
if text_node.parent != p_tag:
|
1526 |
+
continue
|
1527 |
+
|
1528 |
+
original_text = str(text_node)
|
1529 |
+
|
1530 |
+
# Skip very short text nodes
|
1531 |
+
if len(original_text.strip()) < 20:
|
1532 |
+
continue
|
1533 |
+
|
1534 |
+
modified_text = original_text
|
1535 |
+
|
1536 |
+
# Check each keyword
|
1537 |
+
for keyword in keywords:
|
1538 |
+
# Use word boundaries for accurate matching
|
1539 |
+
pattern = r'\b' + re.escape(keyword) + r'\b'
|
1540 |
+
|
1541 |
+
# Find all matches (case-insensitive)
|
1542 |
+
matches = list(re.finditer(pattern, modified_text, flags=re.IGNORECASE))
|
1543 |
+
|
1544 |
+
# Replace from end to beginning to maintain positions
|
1545 |
+
for match in reversed(matches):
|
1546 |
+
start, end = match.span()
|
1547 |
+
matched_text = match.group(0)
|
1548 |
+
# Wrap with strong tag
|
1549 |
+
modified_text = (modified_text[:start] +
|
1550 |
+
f'<strong>{matched_text}</strong>' +
|
1551 |
+
modified_text[end:])
|
1552 |
+
|
1553 |
+
# If text was modified, replace the text node
|
1554 |
+
if modified_text != original_text:
|
1555 |
+
# Parse the modified text to create new nodes
|
1556 |
+
new_soup = BeautifulSoup(modified_text, 'html.parser')
|
1557 |
+
# Replace the text node with the new nodes
|
1558 |
+
for new_node in reversed(new_soup.contents):
|
1559 |
+
text_node.insert_after(new_node)
|
1560 |
+
text_node.extract()
|
1561 |
+
|
1562 |
+
def add_natural_flow_variations(self, text):
|
1563 |
+
"""Add more natural flow and rhythm variations for Originality AI"""
|
1564 |
+
sentences = self.split_into_sentences_advanced(text)
|
1565 |
+
enhanced_sentences = []
|
1566 |
+
|
1567 |
+
for i, sentence in enumerate(sentences):
|
1568 |
+
if not sentence.strip():
|
1569 |
+
continue
|
1570 |
+
|
1571 |
+
# Add stream-of-consciousness elements (10% chance)
|
1572 |
+
if random.random() < 0.1 and len(sentence.split()) > 10:
|
1573 |
+
stream_elements = [
|
1574 |
+
" - wait, let me back up - ",
|
1575 |
+
" - actually, scratch that - ",
|
1576 |
+
" - or maybe I should say - ",
|
1577 |
+
" - hmm, how do I put this - ",
|
1578 |
+
" - okay, here's the thing - ",
|
1579 |
+
" - you know what I mean? - "
|
1580 |
+
]
|
1581 |
+
words = sentence.split()
|
1582 |
+
pos = random.randint(len(words)//4, 3*len(words)//4)
|
1583 |
+
words.insert(pos, random.choice(stream_elements))
|
1584 |
+
sentence = ' '.join(words)
|
1585 |
+
|
1586 |
+
# Add human-like self-corrections (5% chance)
|
1587 |
+
if random.random() < 0.05:
|
1588 |
+
corrections = [
|
1589 |
+
" - or rather, ",
|
1590 |
+
" - well, actually, ",
|
1591 |
+
" - I mean, ",
|
1592 |
+
" - or should I say, ",
|
1593 |
+
" - correction: "
|
1594 |
+
]
|
1595 |
+
words = sentence.split()
|
1596 |
+
if len(words) > 8:
|
1597 |
+
pos = random.randint(len(words)//2, len(words)-3)
|
1598 |
+
correction = random.choice(corrections)
|
1599 |
+
# Repeat a concept with variation
|
1600 |
+
repeated_word_idx = random.randint(max(0, pos-5), pos-1)
|
1601 |
+
if repeated_word_idx < len(words):
|
1602 |
+
words.insert(pos, correction)
|
1603 |
+
sentence = ' '.join(words)
|
1604 |
+
|
1605 |
+
# Add thinking-out-loud patterns (8% chance)
|
1606 |
+
if random.random() < 0.08 and i > 0:
|
1607 |
+
thinking_patterns = [
|
1608 |
+
"Come to think of it, ",
|
1609 |
+
"Actually, you know what? ",
|
1610 |
+
"Wait, here's a thought: ",
|
1611 |
+
"Oh, and another thing - ",
|
1612 |
+
"Speaking of which, ",
|
1613 |
+
"This reminds me, ",
|
1614 |
+
"Now that I mention it, ",
|
1615 |
+
"Funny you should ask, because "
|
1616 |
+
]
|
1617 |
+
pattern = random.choice(thinking_patterns)
|
1618 |
+
sentence = pattern + sentence[0].lower() + sentence[1:] if len(sentence) > 1 else sentence
|
1619 |
+
|
1620 |
+
enhanced_sentences.append(sentence)
|
1621 |
+
|
1622 |
+
return ' '.join(enhanced_sentences)
|
1623 |
+
|
1624 |
+
def process_html(self, html_content, primary_keywords="", secondary_keywords="", progress_callback=None):
|
1625 |
+
"""Main processing function with progress callback"""
|
1626 |
+
if not html_content.strip():
|
1627 |
+
return "Please provide HTML content."
|
1628 |
+
|
1629 |
+
# Store all script and style content to preserve it
|
1630 |
+
script_placeholder = "###SCRIPT_PLACEHOLDER_{}###"
|
1631 |
+
style_placeholder = "###STYLE_PLACEHOLDER_{}###"
|
1632 |
+
preserved_scripts = []
|
1633 |
+
preserved_styles = []
|
1634 |
+
|
1635 |
+
# Temporarily replace script and style tags with placeholders
|
1636 |
+
soup_temp = BeautifulSoup(html_content, 'html.parser')
|
1637 |
+
|
1638 |
+
# Preserve all script tags
|
1639 |
+
for idx, script in enumerate(soup_temp.find_all('script')):
|
1640 |
+
placeholder = script_placeholder.format(idx)
|
1641 |
+
preserved_scripts.append(str(script))
|
1642 |
+
script.replace_with(placeholder)
|
1643 |
+
|
1644 |
+
# Preserve all style tags
|
1645 |
+
for idx, style in enumerate(soup_temp.find_all('style')):
|
1646 |
+
placeholder = style_placeholder.format(idx)
|
1647 |
+
preserved_styles.append(str(style))
|
1648 |
+
style.replace_with(placeholder)
|
1649 |
+
|
1650 |
+
# Get the modified HTML
|
1651 |
+
html_content = str(soup_temp)
|
1652 |
+
|
1653 |
+
# Combine keywords and clean them
|
1654 |
+
all_keywords = []
|
1655 |
+
if primary_keywords:
|
1656 |
+
# Clean and validate each keyword
|
1657 |
+
for k in primary_keywords.split(','):
|
1658 |
+
cleaned = k.strip()
|
1659 |
+
if cleaned and len(cleaned) > 1: # Skip empty or single-char keywords
|
1660 |
+
all_keywords.append(cleaned)
|
1661 |
+
if secondary_keywords:
|
1662 |
+
for k in secondary_keywords.split(','):
|
1663 |
+
cleaned = k.strip()
|
1664 |
+
if cleaned and len(cleaned) > 1:
|
1665 |
+
all_keywords.append(cleaned)
|
1666 |
+
|
1667 |
+
# Remove duplicates while preserving order
|
1668 |
+
seen = set()
|
1669 |
+
unique_keywords = []
|
1670 |
+
for k in all_keywords:
|
1671 |
+
if k.lower() not in seen:
|
1672 |
+
seen.add(k.lower())
|
1673 |
+
unique_keywords.append(k)
|
1674 |
+
all_keywords = unique_keywords
|
1675 |
+
|
1676 |
+
try:
|
1677 |
+
# Extract text elements
|
1678 |
+
soup, text_elements = self.extract_text_from_html(html_content)
|
1679 |
+
|
1680 |
+
total_elements = len(text_elements)
|
1681 |
+
print(f"Found {total_elements} text elements to process (after filtering)")
|
1682 |
+
if all_keywords:
|
1683 |
+
print(f"Preserving keywords: {all_keywords}")
|
1684 |
+
|
1685 |
+
# Process each text element
|
1686 |
+
processed_count = 0
|
1687 |
+
|
1688 |
+
for i, element_info in enumerate(text_elements):
|
1689 |
+
original_text = element_info['text']
|
1690 |
+
|
1691 |
+
# Skip placeholders
|
1692 |
+
if "###SCRIPT_PLACEHOLDER_" in original_text or "###STYLE_PLACEHOLDER_" in original_text:
|
1693 |
+
continue
|
1694 |
+
|
1695 |
+
# Skip very short texts
|
1696 |
+
if len(original_text.split()) < 3:
|
1697 |
+
continue
|
1698 |
+
|
1699 |
+
# Debug: Check if keywords are in this text
|
1700 |
+
text_has_keywords = any(keyword.lower() in original_text.lower() for keyword in all_keywords)
|
1701 |
+
if text_has_keywords:
|
1702 |
+
print(f"Debug: Processing text with keywords: {original_text[:50]}...")
|
1703 |
+
|
1704 |
+
# First pass with Dipper (with adjusted diversity)
|
1705 |
+
paraphrased_text = self.paraphrase_with_dipper(
|
1706 |
+
original_text,
|
1707 |
+
keywords=all_keywords
|
1708 |
+
)
|
1709 |
+
|
1710 |
+
# Verify no placeholders remain
|
1711 |
+
if '__KW' in paraphrased_text or '___' in paraphrased_text:
|
1712 |
+
print(f"Warning: Placeholder or underscores found in paraphrased text: {paraphrased_text[:100]}...")
|
1713 |
+
# Try to restore again with the enhanced function
|
1714 |
+
temp_map = {}
|
1715 |
+
for j, keyword in enumerate(all_keywords):
|
1716 |
+
temp_map[f'__KW{j:03d}__'] = keyword
|
1717 |
+
paraphrased_text = self.restore_keywords_robust(paraphrased_text, temp_map)
|
1718 |
+
|
1719 |
+
# Second pass with BART for longer texts (increased probability)
|
1720 |
+
if self.use_bart and len(paraphrased_text.split()) > 8:
|
1721 |
+
# 50% chance to use BART for more variation (reduced from 60%)
|
1722 |
+
if random.random() < 0.5:
|
1723 |
+
paraphrased_text = self.paraphrase_with_bart(
|
1724 |
+
paraphrased_text,
|
1725 |
+
keywords=all_keywords
|
1726 |
+
)
|
1727 |
+
|
1728 |
+
# Apply sentence variation
|
1729 |
+
paraphrased_text = self.apply_sentence_variation(paraphrased_text)
|
1730 |
+
|
1731 |
+
# Add natural flow variations
|
1732 |
+
paraphrased_text = self.add_natural_flow_variations(paraphrased_text)
|
1733 |
+
|
1734 |
+
# Fix punctuation and formatting
|
1735 |
+
paraphrased_text = self.fix_punctuation(paraphrased_text)
|
1736 |
+
|
1737 |
+
# Final check for any remaining placeholders or underscores
|
1738 |
+
if '___' in paraphrased_text or '__KW' in paraphrased_text:
|
1739 |
+
print(f"Error: Unresolved placeholders in final text")
|
1740 |
+
# Use original text if we can't resolve placeholders
|
1741 |
+
paraphrased_text = original_text
|
1742 |
+
|
1743 |
+
# Final quality check
|
1744 |
+
if paraphrased_text and len(paraphrased_text.split()) >= 3:
|
1745 |
+
element_info['element'].replace_with(NavigableString(paraphrased_text))
|
1746 |
+
processed_count += 1
|
1747 |
+
|
1748 |
+
# Progress update
|
1749 |
+
if progress_callback:
|
1750 |
+
progress_callback(i + 1, total_elements)
|
1751 |
+
|
1752 |
+
if i % 10 == 0 or i == total_elements - 1:
|
1753 |
+
progress = (i + 1) / total_elements * 100
|
1754 |
+
print(f"Progress: {progress:.1f}%")
|
1755 |
+
|
1756 |
+
# Wrap keywords with <strong> tags in paragraphs
|
1757 |
+
self.wrap_keywords_in_paragraphs(soup, all_keywords)
|
1758 |
+
|
1759 |
+
# Post-process the entire HTML to fix bold/strong formatting
|
1760 |
+
result = str(soup)
|
1761 |
+
result = self.post_process_html(result)
|
1762 |
+
|
1763 |
+
# Final safety check for any remaining placeholders or underscores
|
1764 |
+
if '__KW' in result or re.search(r'_{3,}', result):
|
1765 |
+
print("Warning: Found placeholders or multiple underscores in final HTML output")
|
1766 |
+
# Attempt to clean them with keywords
|
1767 |
+
for i, keyword in enumerate(all_keywords):
|
1768 |
+
result = result.replace(f'__KW{i:03d}__', keyword)
|
1769 |
+
result = re.sub(r'_{3,}', keyword, result, count=1)
|
1770 |
+
|
1771 |
+
# Restore all script tags
|
1772 |
+
for idx, script_content in enumerate(preserved_scripts):
|
1773 |
+
placeholder = script_placeholder.format(idx)
|
1774 |
+
result = result.replace(placeholder, script_content)
|
1775 |
+
|
1776 |
+
# Restore all style tags
|
1777 |
+
for idx, style_content in enumerate(preserved_styles):
|
1778 |
+
placeholder = style_placeholder.format(idx)
|
1779 |
+
result = result.replace(placeholder, style_content)
|
1780 |
+
|
1781 |
+
# Validate and fix HTML syntax
|
1782 |
+
result = self.validate_and_fix_html(result)
|
1783 |
+
|
1784 |
+
# Count skipped elements properly
|
1785 |
+
all_text_elements = soup.find_all(string=True)
|
1786 |
+
skipped = len([e for e in all_text_elements if e.strip() and e.parent.name not in ['script', 'style', 'noscript']]) - total_elements
|
1787 |
+
|
1788 |
+
print(f"Successfully processed {processed_count} text elements")
|
1789 |
+
print(f"Skipped {skipped} elements (headings, CTAs, tables, testimonials, strong/bold tags, etc.)")
|
1790 |
+
print(f"Preserved {len(preserved_scripts)} script tags and {len(preserved_styles)} style tags")
|
1791 |
+
|
1792 |
+
return result
|
1793 |
+
|
1794 |
+
except Exception as e:
|
1795 |
+
import traceback
|
1796 |
+
error_msg = f"Error processing HTML: {str(e)}\n{traceback.format_exc()}"
|
1797 |
+
print(error_msg)
|
1798 |
+
# Return original HTML with error message prepended as HTML comment
|
1799 |
+
return f"<!-- {error_msg} -->\n{html_content}"
|
1800 |
+
|
1801 |
+
def post_process_html(self, html_text):
|
1802 |
+
"""Post-process the entire HTML to fix formatting issues"""
|
1803 |
+
# Fix empty angle brackets that might appear
|
1804 |
+
html_text = re.sub(r'<>\s*([^<>]+?)\s*(?=\.|\s|<)', r'\1', html_text) # Remove <> around text
|
1805 |
+
html_text = re.sub(r'<>', '', html_text) # Remove any remaining empty <>
|
1806 |
+
|
1807 |
+
# Fix double angle brackets around bold tags
|
1808 |
+
html_text = re.sub(r'<<b>>', '<b>', html_text)
|
1809 |
+
html_text = re.sub(r'<</b>>', '</b>', html_text)
|
1810 |
+
html_text = re.sub(r'<<strong>>', '<strong>', html_text)
|
1811 |
+
html_text = re.sub(r'<</strong>>', '</strong>', html_text)
|
1812 |
+
|
1813 |
+
# Fix periods around bold/strong tags
|
1814 |
+
html_text = re.sub(r'\.\s*<(b|strong)>', '. <\1>', html_text) # Period before bold
|
1815 |
+
html_text = re.sub(r'</(b|strong)>\s*\.', '</\1>.', html_text) # Period after bold
|
1816 |
+
html_text = re.sub(r'\.<<(b|strong)>>', '. <\1>', html_text) # Fix double bracket cases
|
1817 |
+
html_text = re.sub(r'</(b|strong)>>\.', '</\1>.', html_text)
|
1818 |
+
|
1819 |
+
# Fix periods after colons
|
1820 |
+
html_text = re.sub(r':\s*\.', ':', html_text)
|
1821 |
+
html_text = re.sub(r'\.:', ':', html_text)
|
1822 |
+
|
1823 |
+
# Check if a line is a list item
|
1824 |
+
def process_line(line):
|
1825 |
+
# Check if this line contains a list pattern with bold
|
1826 |
+
list_pattern = r'(?:^|\s)(?:[-•*▪▫◦‣⁃]\s*)?<(?:strong|b)>[^<]+:</(?:strong|b)>'
|
1827 |
+
if re.search(list_pattern, line):
|
1828 |
+
# This is a list item, preserve the colon format
|
1829 |
+
return line
|
1830 |
+
|
1831 |
+
# Not a list item, apply regular fixes
|
1832 |
+
# Remove periods immediately inside bold tags
|
1833 |
+
line = re.sub(r'<(strong|b)>\s*\.\s*([^<]+)\s*\.\s*</\1>', r'<\1>\2</\1>', line)
|
1834 |
+
|
1835 |
+
# Fix sentence endings with bold
|
1836 |
+
line = re.sub(r'</(strong|b)>\s*([.!?])', r'</\1>\2', line)
|
1837 |
+
|
1838 |
+
return line
|
1839 |
+
|
1840 |
+
# Process line by line to preserve list formatting
|
1841 |
+
lines = html_text.split('\n')
|
1842 |
+
processed_lines = [process_line(line) for line in lines]
|
1843 |
+
html_text = '\n'.join(processed_lines)
|
1844 |
+
|
1845 |
+
# Fix sentence starts with bold
|
1846 |
+
def fix_bold_sentence_start(match):
|
1847 |
+
pre_context = match.group(1)
|
1848 |
+
tag = match.group(2)
|
1849 |
+
content = match.group(3)
|
1850 |
+
|
1851 |
+
# Skip if this is part of a list item with colon
|
1852 |
+
full_match = match.group(0)
|
1853 |
+
if ':' in full_match and '</' + tag + '>' in full_match:
|
1854 |
+
return full_match
|
1855 |
+
|
1856 |
+
# Check if this should start with capital
|
1857 |
+
if pre_context == '' or pre_context.endswith(('.', '!', '?', '>')):
|
1858 |
+
if content and content[0].islower():
|
1859 |
+
content = content[0].upper() + content[1:]
|
1860 |
+
|
1861 |
+
return f'{pre_context}<{tag}>{content}'
|
1862 |
+
|
1863 |
+
# Look for bold/strong tags and check their context
|
1864 |
+
html_text = re.sub(r'(^|.*?)(<(?:strong|b)>)([a-zA-Z])', fix_bold_sentence_start, html_text)
|
1865 |
+
|
1866 |
+
# Clean up spacing around bold tags (but preserve list formatting)
|
1867 |
+
# Split into segments to handle list items separately
|
1868 |
+
segments = re.split(r'(<(?:strong|b)>[^<]*:</(?:strong|b)>)', html_text)
|
1869 |
+
cleaned_segments = []
|
1870 |
+
|
1871 |
+
for i, segment in enumerate(segments):
|
1872 |
+
if i % 2 == 1: # This is a list item pattern
|
1873 |
+
cleaned_segments.append(segment)
|
1874 |
+
else:
|
1875 |
+
# Apply spacing fixes to non-list segments
|
1876 |
+
segment = re.sub(r'\s+<(strong|b)>', r' <\1>', segment)
|
1877 |
+
segment = re.sub(r'</(strong|b)>\s+', r'</\1> ', segment)
|
1878 |
+
# Fix punctuation issues
|
1879 |
+
segment = re.sub(r'([.,!?;:])\s*([.,!?;:])', r'\1', segment)
|
1880 |
+
# Fix periods inside/around bold
|
1881 |
+
segment = re.sub(r'\.<(strong|b)>\.', '. <\1>', segment)
|
1882 |
+
segment = re.sub(r'\.</(strong|b)>\.', '</\1>.', segment)
|
1883 |
+
cleaned_segments.append(segment)
|
1884 |
+
|
1885 |
+
html_text = ''.join(cleaned_segments)
|
1886 |
+
|
1887 |
+
# Final cleanup
|
1888 |
+
html_text = re.sub(r'\.{2,}', '.', html_text) # Multiple periods
|
1889 |
+
html_text = re.sub(r',{2,}', ',', html_text) # Multiple commas
|
1890 |
+
html_text = re.sub(r':{2,}', ':', html_text) # Multiple colons
|
1891 |
+
html_text = re.sub(r'\s+([.,!?;:])', r'\1', html_text) # Space before punctuation
|
1892 |
+
|
1893 |
+
# Fix empty bold tags (but not those with just colons)
|
1894 |
+
html_text = re.sub(r'<(strong|b)>\s*</\1>', '', html_text)
|
1895 |
+
|
1896 |
+
# Fix specific patterns in lists/stats
|
1897 |
+
# Pattern like "5,000+" should not have period after
|
1898 |
+
html_text = re.sub(r'(\d+[,\d]*\+?)\s*\.\s*\n', r'\1\n', html_text)
|
1899 |
+
|
1900 |
+
# Clean up any remaining double brackets
|
1901 |
+
html_text = re.sub(r'<<', '<', html_text)
|
1902 |
+
html_text = re.sub(r'>>', '>', html_text)
|
1903 |
+
|
1904 |
+
# Apply final minimal grammar fixes
|
1905 |
+
html_text = self.grammar_fixer.smart_fix(html_text)
|
1906 |
+
|
1907 |
+
return html_text
|
1908 |
+
|
1909 |
+
# Initialize the humanizer
|
1910 |
+
humanizer = EnhancedDipperHumanizer()
|
1911 |
+
|
1912 |
+
def humanize_html(html_input, primary_keywords="", secondary_keywords="", progress=gr.Progress()):
|
1913 |
+
"""Gradio interface function with progress updates"""
|
1914 |
+
if not html_input:
|
1915 |
+
return "Please provide HTML content to humanize."
|
1916 |
+
|
1917 |
+
progress(0, desc="Starting processing...")
|
1918 |
+
start_time = time.time()
|
1919 |
+
|
1920 |
+
# Create a wrapper to update progress
|
1921 |
+
def progress_callback(current, total):
|
1922 |
+
if total > 0:
|
1923 |
+
progress(current / total, desc=f"Processing: {current}/{total} elements")
|
1924 |
+
|
1925 |
+
# Pass progress callback to process_html
|
1926 |
+
result = humanizer.process_html(
|
1927 |
+
html_input,
|
1928 |
+
primary_keywords,
|
1929 |
+
secondary_keywords,
|
1930 |
+
progress_callback=progress_callback
|
1931 |
+
)
|
1932 |
+
|
1933 |
+
processing_time = time.time() - start_time
|
1934 |
+
print(f"Processing completed in {processing_time:.2f} seconds")
|
1935 |
+
progress(1.0, desc="Complete!")
|
1936 |
+
|
1937 |
+
return result
|
1938 |
+
|
1939 |
+
# Create Gradio interface with queue
|
1940 |
+
iface = gr.Interface(
|
1941 |
+
fn=humanize_html,
|
1942 |
+
inputs=[
|
1943 |
+
gr.Textbox(
|
1944 |
+
lines=10,
|
1945 |
+
placeholder="Paste your HTML content here...",
|
1946 |
+
label="HTML Input"
|
1947 |
+
),
|
1948 |
+
gr.Textbox(
|
1949 |
+
placeholder="Enter primary keywords separated by commas (e.g., GMAT Focus Edition, MBA, Data Insights)",
|
1950 |
+
label="Primary Keywords (preserved exactly)"
|
1951 |
+
),
|
1952 |
+
gr.Textbox(
|
1953 |
+
placeholder="Enter secondary keywords separated by commas (e.g., test preparation, business school)",
|
1954 |
+
label="Secondary Keywords (preserved exactly)"
|
1955 |
+
)
|
1956 |
+
],
|
1957 |
+
outputs=gr.Textbox(
|
1958 |
+
lines=10,
|
1959 |
+
label="Humanized HTML Output"
|
1960 |
+
),
|
1961 |
+
title="Enhanced Dipper AI Humanizer - Optimized for Originality AI",
|
1962 |
+
description="""
|
1963 |
+
Ultra-aggressive humanizer optimized to achieve 100% human scores on both Undetectable AI and Originality AI.
|
1964 |
+
|
1965 |
+
Key Features:
|
1966 |
+
- Maximum diversity settings (90% lexical, 40% order) for natural variation
|
1967 |
+
- Enhanced human patterns: personal opinions, self-corrections, thinking-out-loud
|
1968 |
+
- Natural typos, contractions, and conversational flow
|
1969 |
+
- Stream-of-consciousness elements and rhetorical questions
|
1970 |
+
- Originality AI-specific optimizations: varied sentence starters, emphatic repetitions
|
1971 |
+
- Fixed placeholder system that preserves keywords
|
1972 |
+
- Keywords inside <p> tags are automatically wrapped with <strong> tags
|
1973 |
+
- Skips content in <strong>, <b>, and heading tags (including inside tables)
|
1974 |
+
- Designed to pass the strictest AI detection systems
|
1975 |
+
|
1976 |
+
The tool creates genuinely human-like writing patterns that fool even the most sophisticated detectors!
|
1977 |
+
|
1978 |
+
⚠️ Note: Processing may take 5-10 minutes for large HTML documents.
|
1979 |
+
""",
|
1980 |
+
examples=[
|
1981 |
+
["""<article>
|
1982 |
+
<h1>The Benefits of Regular Exercise</h1>
|
1983 |
+
<div class="author-intro">By John Doe, Fitness Expert | 10 years experience</div>
|
1984 |
+
<p>Regular exercise is essential for maintaining good health. It helps improve cardiovascular fitness, strengthens muscles, and enhances mental well-being. Studies have shown that people who exercise regularly have lower risks of chronic diseases.</p>
|
1985 |
+
<p>Additionally, exercise can boost mood and energy levels. It releases endorphins, which are natural mood elevators. Even moderate activities like walking can make a significant difference in overall health.</p>
|
1986 |
+
</article>""", "cardiovascular fitness, mental well-being, chronic diseases", "exercise, health, endorphins"]
|
1987 |
+
],
|
1988 |
+
theme="default"
|
1989 |
+
)
|
1990 |
+
|
1991 |
+
if __name__ == "__main__":
|
1992 |
+
# Enable queue for better handling of long-running processes
|
1993 |
+
iface.queue(max_size=10)
|
1994 |
+
iface.launch(share=True)
|