Spaces:
Build error
Build error
| import base64 | |
| import json | |
| from datetime import datetime | |
| import gradio as gr | |
| import torch | |
| import spaces | |
| from PIL import Image, ImageDraw | |
| from qwen_vl_utils import process_vision_info | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| import ast | |
| import os | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download, list_repo_files | |
| # Define constants | |
| DESCRIPTION = "[ShowUI Demo](https://huggingface.co/showlab/ShowUI-2B)" | |
| _SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." | |
| MIN_PIXELS = 256 * 28 * 28 | |
| MAX_PIXELS = 1344 * 28 * 28 | |
| # Specify the model repository and destination folder | |
| model_repo = "showlab/ShowUI-2B" | |
| destination_folder = "./showui-2b" | |
| # Ensure the destination folder exists | |
| os.makedirs(destination_folder, exist_ok=True) | |
| # List all files in the repository | |
| files = list_repo_files(repo_id=model_repo) | |
| # Download each file to the destination folder | |
| for file in files: | |
| file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder) | |
| print(f"Downloaded {file} to {file_path}") | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| destination_folder, | |
| torch_dtype=torch.bfloat16, | |
| device_map="cpu", | |
| ) | |
| # Load the processor | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS) | |
| # Helper functions | |
| def draw_point(image_input, point=None, radius=5): | |
| """Draw a point on the image.""" | |
| if isinstance(image_input, str): | |
| image = Image.open(image_input) | |
| else: | |
| image = Image.fromarray(np.uint8(image_input)) | |
| if point: | |
| x, y = point[0] * image.width, point[1] * image.height | |
| ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') | |
| return image | |
| def array_to_image_path(image_array, session_id): | |
| """Save the uploaded image and return its path.""" | |
| if image_array is None: | |
| raise ValueError("No image provided. Please upload an image before submitting.") | |
| img = Image.fromarray(np.uint8(image_array)) | |
| filename = f"{session_id}.png" | |
| img.save(filename) | |
| return os.path.abspath(filename) | |
| def crop_image(image_path, click_xy, crop_factor=0.5): | |
| """Crop the image around the click point.""" | |
| image = Image.open(image_path) | |
| width, height = image.size | |
| crop_width, crop_height = int(width * crop_factor), int(height * crop_factor) | |
| center_x, center_y = int(click_xy[0] * width), int(click_xy[1] * height) | |
| left = max(center_x - crop_width // 2, 0) | |
| upper = max(center_y - crop_height // 2, 0) | |
| right = min(center_x + crop_width // 2, width) | |
| lower = min(center_y + crop_height // 2, height) | |
| cropped_image = image.crop((left, upper, right, lower)) | |
| cropped_image_path = f"cropped_{os.path.basename(image_path)}" | |
| cropped_image.save(cropped_image_path) | |
| return cropped_image_path | |
| def run_showui(image, query, session_id, iterations=2): | |
| """Main function for iterative inference.""" | |
| image_path = array_to_image_path(image, session_id) | |
| click_xy = None | |
| images_during_iterations = [] # List to store images at each step | |
| for _ in range(iterations): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": _SYSTEM}, | |
| {"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, | |
| {"type": "text", "text": query} | |
| ], | |
| } | |
| ] | |
| global model | |
| model = model.to("cuda") | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt" | |
| ) | |
| inputs = inputs.to("cuda") | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| )[0] | |
| click_xy = ast.literal_eval(output_text) | |
| # Draw point on the current image | |
| result_image = draw_point(image_path, click_xy, radius=10) | |
| images_during_iterations.append(result_image) # Store the current image | |
| # Crop the image for the next iteration | |
| image_path = crop_image(image_path, click_xy) | |
| return images_during_iterations, str(click_xy) | |
| def save_and_upload_data(image, query, session_id, is_example_image, votes=None): | |
| """Save the data to a JSON file and upload to S3.""" | |
| if is_example_image == "True": | |
| return | |
| votes = votes or {"upvotes": 0, "downvotes": 0} | |
| # Save image locally | |
| image_file_name = f"{session_id}.png" | |
| image.save(image_file_name) | |
| data = { | |
| "image_path": image_file_name, | |
| "query": query, | |
| "votes": votes, | |
| "timestamp": datetime.now().isoformat() | |
| } | |
| local_file_name = f"{session_id}.json" | |
| with open(local_file_name, "w") as f: | |
| json.dump(data, f) | |
| return data | |
| def update_vote(vote_type, session_id, is_example_image): | |
| """Update the vote count and re-upload the JSON file.""" | |
| if is_example_image == "True": | |
| return "Example image." | |
| local_file_name = f"{session_id}.json" | |
| with open(local_file_name, "r") as f: | |
| data = json.load(f) | |
| if vote_type == "upvote": | |
| data["votes"]["upvotes"] += 1 | |
| elif vote_type == "downvote": | |
| data["votes"]["downvotes"] += 1 | |
| with open(local_file_name, "w") as f: | |
| json.dump(data, f) | |
| return f"Thank you for your {vote_type}!" | |
| with open("./assets/showui.png", "rb") as image_file: | |
| base64_image = base64.b64encode(image_file.read()).decode("utf-8") | |
| examples = [ | |
| ["./examples/app_store.png", "Download Kindle.", True], | |
| ["./examples/ios_setting.png", "Turn off Do not disturb.", True], | |
| # ["./examples/apple_music.png", "Star to favorite.", True], | |
| # ["./examples/map.png", "Boston.", True], | |
| # ["./examples/wallet.png", "Scan a QR code.", True], | |
| # ["./examples/word.png", "More shapes.", True], | |
| # ["./examples/web_shopping.png", "Proceed to checkout.", True], | |
| # ["./examples/web_forum.png", "Post my comment.", True], | |
| # ["./examples/safari_google.png", "Click on search bar.", True], | |
| ] | |
| def build_demo(embed_mode, concurrency_count=1): | |
| with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo: | |
| state_image_path = gr.State(value=None) | |
| state_session_id = gr.State(value=None) | |
| if not embed_mode: | |
| gr.HTML( | |
| f""" | |
| <div style="text-align: center; margin-bottom: 20px;"> | |
| <div style="display: flex; justify-content: center;"> | |
| <img src="data:image/png;base64,{base64_image}" alt="ShowUI" width="320" style="margin-bottom: 10px;"/> | |
| </div> | |
| <p>ShowUI is a lightweight vision-language-action model for GUI agents.</p> | |
| <div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;"> | |
| <a href="https://huggingface.co/showlab/ShowUI-2B" target="_blank"> | |
| <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/> | |
| </a> | |
| <a href="https://arxiv.org/abs/2411.17465" target="_blank"> | |
| <img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/> | |
| </a> | |
| <a href="https://github.com/showlab/ShowUI" target="_blank"> | |
| <img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/> | |
| </a> | |
| </div> | |
| </div> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| imagebox = gr.Image(type="numpy", label="Input Screenshot", placeholder="""#Try ShowUI with screenshots! | |
| Windows: [Win + Shift + S] | |
| macOS: [Command + Shift + 3] | |
| Then upload/paste from clipboard 🤗 | |
| """) | |
| # Add a slider for iteration count | |
| iteration_slider = gr.Slider(minimum=1, maximum=3, step=1, value=1, label="Refinement Steps") | |
| textbox = gr.Textbox( | |
| show_label=True, | |
| placeholder="Enter a query (e.g., 'Click Nahant')", | |
| label="Query", | |
| ) | |
| submit_btn = gr.Button(value="Submit", variant="primary") | |
| # Examples component | |
| gr.Examples( | |
| examples=[[e[0], e[1]] for e in examples], | |
| inputs=[imagebox, textbox], | |
| outputs=[textbox], # Only update the query textbox | |
| examples_per_page=3, | |
| ) | |
| # Add a hidden dropdown to pass the `is_example` flag | |
| is_example_dropdown = gr.Dropdown( | |
| choices=["True", "False"], | |
| value="False", | |
| visible=False, | |
| label="Is Example Image", | |
| ) | |
| def set_is_example(query): | |
| # Find the example and return its `is_example` flag | |
| for _, example_query, is_example in examples: | |
| if query.strip() == example_query.strip(): | |
| return str(is_example) # Return as string for Dropdown compatibility | |
| return "False" | |
| textbox.change( | |
| set_is_example, | |
| inputs=[textbox], | |
| outputs=[is_example_dropdown], | |
| ) | |
| with gr.Column(scale=8): | |
| output_gallery = gr.Gallery(label="Iterative Refinement", object_fit="contain", preview=True) | |
| # output_gallery = gr.Gallery(label="Iterative Refinement") | |
| gr.HTML( | |
| """ | |
| <p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p> | |
| """ | |
| ) | |
| output_coords = gr.Textbox(label="Final Clickable Coordinates") | |
| gr.HTML( | |
| """ | |
| <p><strong>🤔 Good or bad? Rate your experience to help us improve! ⬇️</strong></p> | |
| """ | |
| ) | |
| with gr.Row(elem_id="action-buttons", equal_height=True): | |
| upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary") | |
| downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary") | |
| clear_btn = gr.Button(value="🗑️ Clear", interactive=True) | |
| def on_submit(image, query, iterations, is_example_image): | |
| if image is None: | |
| raise ValueError("No image provided. Please upload an image before submitting.") | |
| session_id = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| images_during_iterations, click_coords = run_showui(image, query, session_id, iterations) | |
| save_and_upload_data(images_during_iterations[0], query, session_id, is_example_image) | |
| return images_during_iterations, click_coords, session_id | |
| submit_btn.click( | |
| on_submit, | |
| [imagebox, textbox, iteration_slider, is_example_dropdown], | |
| [output_gallery, output_coords, state_session_id], | |
| ) | |
| clear_btn.click( | |
| lambda: (None, None, None, None), | |
| inputs=None, | |
| outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id], | |
| queue=False | |
| ) | |
| upvote_btn.click( | |
| lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image), | |
| inputs=[state_session_id, is_example_dropdown], | |
| outputs=[], | |
| queue=False | |
| ) | |
| downvote_btn.click( | |
| lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image), | |
| inputs=[state_session_id, is_example_dropdown], | |
| outputs=[], | |
| queue=False | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = build_demo(embed_mode=False) | |
| demo.queue(api_open=False).launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| ssr_mode=False, | |
| debug=True, | |
| ) |