import time import streamlit as st import numpy as np from PIL import Image import urllib.request import io from utils import * # Initialize labels and model labels = gen_labels() model = model_arc() # Assuming this function initializes and returns a trained model # Streamlit UI st.markdown('''

Garbage Segregation

''', unsafe_allow_html=True) st.markdown('''

Please upload Waste Image to find its Category

''', unsafe_allow_html=True) opt = st.selectbox("How do you want to upload the image for classification?", ('Please Select', 'Upload image via link', 'Upload image from device')) # Image processing based on user selection image = None if opt == 'Upload image from device': file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg']) if file: try: image = Image.open(io.BytesIO(file.read())).resize((256, 256), Image.LANCZOS) except Exception as e: st.error(f"Error reading the file: {e}") elif opt == 'Upload image via link': img_url = st.text_input('Enter the Image Address') if st.button('Submit'): try: response = urllib.request.urlopen(img_url) image = Image.open(response).resize((256, 256), Image.LANCZOS) except ValueError: st.error("Please Enter a valid Image Address!") try: if image is not None: st.image(image, width = 300, caption = 'Uploaded Image') if st.button('Predict'): img = preprocess(image) model = model_arc() #model.load_weights("classify_model.h5") prediction = model.predict(img[np.newaxis, ...]) st.info('Hey! The uploaded image has been classified as " {} waste " '.format(labels[np.argmax(prediction[0], axis=-1)])) except Exception as e: st.info(e) pass