Spaces:
Running
Running
File size: 13,013 Bytes
7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 64ccc99 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 7a4e720 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7573377 64ccc99 7a4e720 64ccc99 7573377 84f505c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import gradio as gr
INTRODUCTION="""
### # Optimum CLI Export Tool.. tool
This tool helps organize conversion commands when using Intel Optimum for Transformers and respects the order of positional arguments. Otherwise these commands can get quite nuanced to keep track of.
My goal was to make it easier to construct commands for the [Optimum CLI conversion tool](https://huggingface.co/docs/optimum/main/en/intel/openvino/export) which enables converting models to the OpenVINO Intermediate Representation
outside of the from.pretrained method used in Transformers with OpenVINO related classes like OVModelForCausalLM, OVModelForSeq2SeqLM, OVModelForQuestionAnswering, etc, which interface with the OpenVINO runtime.
## Usage
Here I'm assuming you have followed the instructions in the documentation and have all your dependencies in order.
Run to to get the latest version of the neccessary extension for optimum:
```
pip install --upgrade --upgrade-strategy eager optimum[openvino]
```
Intended workflow:
-Select conversion parameters.
-Hit "Submit"
-Copy command.
-Execute in your environment.
Note: Converstion can take a while and will be resource intensive.
OpenVINO supports Intel CPUs from 6th gen forward, so you can squeeze performance out of older hardware with
different accuracy/performance tradeoffs than the popular quants of GGUFs.
## Discussion
Leveraging CPU, GPU and NPU hardware acceleration from OpenVINO requires converting a model into an Intermediate format derived from ONNX.
The command we execute rebuilds the model graph from it's source to be optimized for how OpenVINO uses this graph in memory.
Using OpenVINO effectively requires considering facts about your Intel hardware. Visit the [Intel Ark]([Intel® Processors for PC, Laptops, Servers, and AI | Intel®](https://www.intel.com/content/www/us/en/products/details/processors.html)) product database to find this information.
Here are some hardware questions you should be able to answer before using this tool;
- What data types does my CPU support?
- What instruction sets?
- How will I be using the model?
- Do I have enough system memory for this task?
It's *the* ground truth for Intel Hardware specs. Even so, when testing with different model architectures
"""
class ConversionTool:
def __init__(self):
self.model_input = gr.Textbox(
label='Model',
placeholder='Model ID on huggingface.co or path on disk',
info="The model to convert. This can be a model ID on Hugging Face or a path on disk."
)
self.output_path = gr.Textbox(
label='Output Directory',
placeholder='Path to store the generated OV model',
info="We are storing some text here"
)
self.task = gr.Dropdown(
label='Task',
choices=['auto'] + [
'image-to-image',
'image-segmentation',
'inpainting',
'sentence-similarity',
'text-to-audio',
'image-to-text',
'automatic-speech-recognition',
'token-classification',
'text-to-image',
'audio-classification',
'feature-extraction',
'semantic-segmentation',
'masked-im',
'audio-xvector',
'audio-frame-classification',
'text2text-generation',
'multiple-choice',
'depth-estimation',
'image-classification',
'fill-mask', 'zero-shot-object-detection', 'object-detection',
'question-answering', 'zero-shot-image-classification',
'mask-generation', 'text-generation', 'text-classification',
'text-generation-with-past'
],
value=None
)
self.framework = gr.Dropdown(
label='Framework',
choices=['pt', 'tf'],
value=None
)
self.weight_format = gr.Dropdown(
label='Weight Format',
choices=['fp32', 'fp16', 'int8', 'int4', 'mxfp4', 'nf4'],
value=None,
info="The level of compression we apply to the intermediate representation."
)
self.library = gr.Dropdown(
label='Library',
choices=[
'auto',
'transformers',
'diffusers',
'timm',
'sentence_transformers',
'open_clip'
],
value=None
)
self.ratio = gr.Number(
label='Ratio',
value=None,
minimum=0.0,
maximum=1.0,
step=0.1
)
self.group_size = gr.Number(
label='Group Size',
value=None,
step=1
)
self.backup_precision = gr.Dropdown(
label='Backup Precision',
choices=['', 'int8_sym', 'int8_asym'],
# value=None
)
self.dataset = gr.Dropdown(
label='Dataset',
choices=['none',
'auto',
'wikitext2',
'c4',
'c4-new',
'contextual',
'conceptual_captions',
'laion/220k-GPT4Vision-captions-from-LIVIS',
'laion/filtered-wit'],
value=None
)
self.trust_remote_code = gr.Checkbox(
label='Trust Remote Code',
value=False)
self.disable_stateful = gr.Checkbox(
label='Disable Stateful',
value=False,
info="Disables stateful inference. This is required for multi GPU inference due to how OpenVINO uses the KV cache. ")
self.disable_convert_tokenizer = gr.Checkbox(
label='Disable Convert Tokenizer',
value=False,
info="Disables the tokenizer conversion. Use when models have custom tokenizers which might have formatting Optimum does not expect."
)
self.all_layers = gr.Checkbox(
label='All Layers',
value=False)
self.awq = gr.Checkbox(
label='AWQ',
value=False,
info="Activation aware quantization algorithm from NNCF. Requires a dataset, which can also be a path. ")
self.scale_estimation = gr.Checkbox(
label='Scale Estimation',
value=False)
self.gptq = gr.Checkbox(
label='GPTQ',
value=False)
self.lora_correction = gr.Checkbox(
label='LoRA Correction',
value=False)
self.sym = gr.Checkbox(
label='Symmetric Quantization',
value=False,
info="Symmetric quantization is faster and uses less memory. It is recommended for most use cases."
)
self.quant_mode = gr.Dropdown(
label='Quantization Mode',
choices=['sym', 'asym'],
value=None
)
self.cache_dir = gr.Textbox(
label='Cache Directory',
placeholder='Path to cache directory'
)
self.pad_token_id = gr.Number(
label='Pad Token ID',
value=None,
step=1,
info="Will try to infer from tokenizer if not provided."
)
self.sensitivity_metric = gr.Dropdown(
label='Sensitivity Metric',
choices=['weight_quantization_error', 'hessian_input_activation',
'mean_activation_variance', 'max_activation_variance', 'mean_activation_magnitude'],
value=None
)
self.num_samples = gr.Number(
label='Number of Samples',
value=None,
step=1
)
self.smooth_quant_alpha = gr.Number(
label='Smooth Quant Alpha',
value=None,
minimum=0.0,
maximum=1.0,
step=0.1
)
self.command_output = gr.TextArea(
label='Generated Command',
placeholder='Generated command will appear here...',
show_label=True,
show_copy_button=True,
lines=5 # Adjust height
)
def construct_command(self, model_input, output_path, task, framework, weight_format, library,
ratio, group_size, backup_precision, dataset,
trust_remote_code, disable_stateful, disable_convert_tokenizer,
all_layers, awq, scale_estimation, gptq, lora_correction, sym,
quant_mode, cache_dir, pad_token_id, sensitivity_metric, num_samples,
smooth_quant_alpha):
"""Construct the command string"""
if not model_input or not output_path:
return ''
cmd_parts = ['optimum-cli export openvino']
cmd_parts.append(f'-m "{model_input}"')
if task and task != 'auto':
cmd_parts.append(f'--task {task}')
if framework:
cmd_parts.append(f'--framework {framework}')
if weight_format and weight_format != 'fp32':
cmd_parts.append(f'--weight-format {weight_format}')
if library and library != 'auto':
cmd_parts.append(f'--library {library}')
if ratio is not None and ratio != 0:
cmd_parts.append(f'--ratio {ratio}')
if group_size is not None and group_size != 0:
cmd_parts.append(f'--group-size {group_size}')
if backup_precision:
cmd_parts.append(f'--backup-precision {backup_precision}')
if dataset and dataset != 'none':
cmd_parts.append(f'--dataset {dataset}')
# Boolean flags - only add if True
if trust_remote_code:
cmd_parts.append('--trust-remote-code')
if disable_stateful:
cmd_parts.append('--disable-stateful')
if disable_convert_tokenizer:
cmd_parts.append('--disable-convert-tokenizer')
if all_layers:
cmd_parts.append('--all-layers')
if awq:
cmd_parts.append('--awq')
if scale_estimation:
cmd_parts.append('--scale-estimation')
if gptq:
cmd_parts.append('--gptq')
if lora_correction:
cmd_parts.append('--lora-correction')
if sym:
cmd_parts.append('--sym')
# Additional optional arguments - only add if they have values
if quant_mode:
cmd_parts.append(f'--quant-mode {quant_mode}')
if cache_dir:
cmd_parts.append(f'--cache_dir "{cache_dir}"')
if pad_token_id is not None and pad_token_id != 0:
cmd_parts.append(f'--pad-token-id {pad_token_id}')
if sensitivity_metric:
cmd_parts.append(f'--sensitivity-metric {sensitivity_metric}')
if num_samples is not None and num_samples != 0:
cmd_parts.append(f'--num-samples {num_samples}')
if smooth_quant_alpha is not None and smooth_quant_alpha != 0:
cmd_parts.append(f'--smooth-quant-alpha {smooth_quant_alpha}')
cmd_parts.append(f'"{output_path}"')
constructed_command = ' '.join(cmd_parts)
return constructed_command
def gradio_app(self):
"""Create and run the Gradio interface."""
inputs = [
self.model_input,
self.output_path,
self.task,
self.framework,
self.weight_format,
self.library,
self.ratio,
self.group_size,
self.backup_precision,
self.dataset,
self.trust_remote_code,
self.disable_stateful,
self.disable_convert_tokenizer,
self.all_layers,
self.awq,
self.scale_estimation,
self.gptq,
self.lora_correction,
self.sym,
self.quant_mode,
self.cache_dir,
self.pad_token_id,
self.sensitivity_metric,
self.num_samples,
self.smooth_quant_alpha,
]
interface = gr.Interface(
fn=self.construct_command,
inputs=inputs,
outputs=self.command_output,
title="OpenVINO Conversion Tool",
description="Enter model information to generate an `optimum-cli` export command.",
# article=INTRODUCTION,
allow_flagging='auto'
)
return interface
if __name__ == "__main__":
tool = ConversionTool()
app = tool.gradio_app()
app.launch(share = False)
|