File size: 1,673 Bytes
c7cb728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a81a31
c7cb728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

# Load the fine-tuned model and tokenizer at startup
model_name = "EbukaGaus/EbukaMBert"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Define the label mapping
label_mapping = {0: 'Neutral', 1: 'Negative', 2: 'Positive'}

# Define a function to predict sentiment
def predict_sentiment(text: str):
    # Tokenise the input text
    inputs = tokenizer(text, return_tensors="pt")

    # Run inference without tracking gradients
    with torch.no_grad():
        outputs = model(**inputs)

    # Apply softmax to get probabilities
    probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)

    # Get the most likely class
    predicted_class = torch.argmax(probabilities, dim=1).item()

    # Map the predicted class to the sentiment label
    predicted_label = label_mapping[predicted_class]

    # Retrieve the confidence score
    confidence = probabilities[0][predicted_class].item()

    return predicted_label, confidence

def main():
    st.title("Sentiment Analysis App")

    # Text input
    text_input = st.text_area("Enter your text here", "")

    # Predict sentiment when the button is clicked
    if st.button("Predict Sentiment"):
        if text_input.strip() == "":
            st.warning("Please enter some text first.")
        else:
            sentiment, confidence = predict_sentiment(text_input)
            st.write(f"**Sentiment:** {sentiment}")
            st.write(f"**Confidence:** {confidence:.2f}")

if __name__ == "__main__":
    main()