import os import gradio as gr title = "Have Fun With ChubbyBot" description = """ <p> <center> The bot is trained on blended_skill_talk dataset using facebook/blenderbot-400M-distill. <img src="https://huggingface.co/spaces/EXFINITE/BlenderBot-UI/resolve/main/img/cover.png" alt="rick" width="250"/> </center> </p> """ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.06616' target='_blank'>Recipes for building an open-domain chatbot</a></p><p style='text-align: center'><a href='https://parl.ai/projects/recipes/' target='_blank'>Original PARLAI Code</a></p></center></p>" import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, BlenderbotForConditionalGeneration, BlenderbotForCausalLM, BlenderbotTokenizer tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill") model = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill",add_cross_attention=False) def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # convert the tokens to text, and then split the responses into the right format response = tokenizer.decode(history[0]).replace("<s>","").split("</s>") response = [(response[i], response[i+1]) for i in range(0, len(response), 2)] # convert to tuples of list return response, history gr.Interface( fn = predict, inputs = ["textbox","state"], outputs = ["chatbot","state"], theme ="seafoam", title = title, description = description, article = article ).launch(enable_queue=True)