Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import torch | |
| from torch import nn | |
| from ..utils import constant_init, kaiming_init | |
| from .registry import PLUGIN_LAYERS | |
| def last_zero_init(m): | |
| if isinstance(m, nn.Sequential): | |
| constant_init(m[-1], val=0) | |
| else: | |
| constant_init(m, val=0) | |
| class ContextBlock(nn.Module): | |
| """ContextBlock module in GCNet. | |
| See 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' | |
| (https://arxiv.org/abs/1904.11492) for details. | |
| Args: | |
| in_channels (int): Channels of the input feature map. | |
| ratio (float): Ratio of channels of transform bottleneck | |
| pooling_type (str): Pooling method for context modeling. | |
| Options are 'att' and 'avg', stand for attention pooling and | |
| average pooling respectively. Default: 'att'. | |
| fusion_types (Sequence[str]): Fusion method for feature fusion, | |
| Options are 'channels_add', 'channel_mul', stand for channelwise | |
| addition and multiplication respectively. Default: ('channel_add',) | |
| """ | |
| _abbr_ = 'context_block' | |
| def __init__(self, | |
| in_channels, | |
| ratio, | |
| pooling_type='att', | |
| fusion_types=('channel_add', )): | |
| super(ContextBlock, self).__init__() | |
| assert pooling_type in ['avg', 'att'] | |
| assert isinstance(fusion_types, (list, tuple)) | |
| valid_fusion_types = ['channel_add', 'channel_mul'] | |
| assert all([f in valid_fusion_types for f in fusion_types]) | |
| assert len(fusion_types) > 0, 'at least one fusion should be used' | |
| self.in_channels = in_channels | |
| self.ratio = ratio | |
| self.planes = int(in_channels * ratio) | |
| self.pooling_type = pooling_type | |
| self.fusion_types = fusion_types | |
| if pooling_type == 'att': | |
| self.conv_mask = nn.Conv2d(in_channels, 1, kernel_size=1) | |
| self.softmax = nn.Softmax(dim=2) | |
| else: | |
| self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
| if 'channel_add' in fusion_types: | |
| self.channel_add_conv = nn.Sequential( | |
| nn.Conv2d(self.in_channels, self.planes, kernel_size=1), | |
| nn.LayerNorm([self.planes, 1, 1]), | |
| nn.ReLU(inplace=True), # yapf: disable | |
| nn.Conv2d(self.planes, self.in_channels, kernel_size=1)) | |
| else: | |
| self.channel_add_conv = None | |
| if 'channel_mul' in fusion_types: | |
| self.channel_mul_conv = nn.Sequential( | |
| nn.Conv2d(self.in_channels, self.planes, kernel_size=1), | |
| nn.LayerNorm([self.planes, 1, 1]), | |
| nn.ReLU(inplace=True), # yapf: disable | |
| nn.Conv2d(self.planes, self.in_channels, kernel_size=1)) | |
| else: | |
| self.channel_mul_conv = None | |
| self.reset_parameters() | |
| def reset_parameters(self): | |
| if self.pooling_type == 'att': | |
| kaiming_init(self.conv_mask, mode='fan_in') | |
| self.conv_mask.inited = True | |
| if self.channel_add_conv is not None: | |
| last_zero_init(self.channel_add_conv) | |
| if self.channel_mul_conv is not None: | |
| last_zero_init(self.channel_mul_conv) | |
| def spatial_pool(self, x): | |
| batch, channel, height, width = x.size() | |
| if self.pooling_type == 'att': | |
| input_x = x | |
| # [N, C, H * W] | |
| input_x = input_x.view(batch, channel, height * width) | |
| # [N, 1, C, H * W] | |
| input_x = input_x.unsqueeze(1) | |
| # [N, 1, H, W] | |
| context_mask = self.conv_mask(x) | |
| # [N, 1, H * W] | |
| context_mask = context_mask.view(batch, 1, height * width) | |
| # [N, 1, H * W] | |
| context_mask = self.softmax(context_mask) | |
| # [N, 1, H * W, 1] | |
| context_mask = context_mask.unsqueeze(-1) | |
| # [N, 1, C, 1] | |
| context = torch.matmul(input_x, context_mask) | |
| # [N, C, 1, 1] | |
| context = context.view(batch, channel, 1, 1) | |
| else: | |
| # [N, C, 1, 1] | |
| context = self.avg_pool(x) | |
| return context | |
| def forward(self, x): | |
| # [N, C, 1, 1] | |
| context = self.spatial_pool(x) | |
| out = x | |
| if self.channel_mul_conv is not None: | |
| # [N, C, 1, 1] | |
| channel_mul_term = torch.sigmoid(self.channel_mul_conv(context)) | |
| out = out * channel_mul_term | |
| if self.channel_add_conv is not None: | |
| # [N, C, 1, 1] | |
| channel_add_term = self.channel_add_conv(context) | |
| out = out + channel_add_term | |
| return out | |