|  | import gradio as gr | 
					
						
						|  |  | 
					
						
						|  | from matplotlib import gridspec | 
					
						
						|  | import matplotlib.pyplot as plt | 
					
						
						|  | import numpy as np | 
					
						
						|  | from PIL import Image | 
					
						
						|  | import tensorflow as tf | 
					
						
						|  | from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation | 
					
						
						|  |  | 
					
						
						|  | feature_extractor = SegformerFeatureExtractor.from_pretrained( | 
					
						
						|  | "nvidia/segformer-b5-finetuned-ade-640-640" | 
					
						
						|  | ) | 
					
						
						|  | model = TFSegformerForSemanticSegmentation.from_pretrained( | 
					
						
						|  | "nvidia/segformer-b5-finetuned-ade-640-640" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def ade_palette(): | 
					
						
						|  | """ADE20K palette that maps each class to RGB values.""" | 
					
						
						|  | return [ | 
					
						
						|  | [204, 87, 92], | 
					
						
						|  | [112, 185, 212], | 
					
						
						|  | [45, 189, 106], | 
					
						
						|  | [234, 123, 67], | 
					
						
						|  | [78, 56, 123], | 
					
						
						|  | [210, 32, 89], | 
					
						
						|  | [90, 180, 56], | 
					
						
						|  | [155, 102, 200], | 
					
						
						|  | [33, 147, 176], | 
					
						
						|  | [255, 183, 76], | 
					
						
						|  | [67, 123, 89], | 
					
						
						|  | [190, 60, 45], | 
					
						
						|  | [134, 112, 200], | 
					
						
						|  | [56, 45, 189], | 
					
						
						|  | [200, 56, 123], | 
					
						
						|  | [87, 92, 204], | 
					
						
						|  | [120, 56, 123], | 
					
						
						|  | [45, 78, 123], | 
					
						
						|  | [156, 200, 56], | 
					
						
						|  | [32, 90, 210], | 
					
						
						|  | [56, 123, 67], | 
					
						
						|  | [180, 56, 123], | 
					
						
						|  | [123, 67, 45], | 
					
						
						|  | [45, 134, 200], | 
					
						
						|  | [67, 56, 123], | 
					
						
						|  | [78, 123, 67], | 
					
						
						|  | [32, 210, 90], | 
					
						
						|  | [45, 56, 189], | 
					
						
						|  | [123, 56, 123], | 
					
						
						|  | [56, 156, 200], | 
					
						
						|  | [189, 56, 45], | 
					
						
						|  | [112, 200, 56], | 
					
						
						|  | [56, 123, 45], | 
					
						
						|  | [200, 32, 90], | 
					
						
						|  | [123, 45, 78], | 
					
						
						|  | [200, 156, 56], | 
					
						
						|  | [45, 67, 123], | 
					
						
						|  | [56, 45, 78], | 
					
						
						|  | [45, 56, 123], | 
					
						
						|  | [123, 67, 56], | 
					
						
						|  | [56, 78, 123], | 
					
						
						|  | [210, 90, 32], | 
					
						
						|  | [123, 56, 189], | 
					
						
						|  | [45, 200, 134], | 
					
						
						|  | [67, 123, 56], | 
					
						
						|  | [123, 45, 67], | 
					
						
						|  | [90, 32, 210], | 
					
						
						|  | [200, 45, 78], | 
					
						
						|  | [32, 210, 90], | 
					
						
						|  | [45, 123, 67], | 
					
						
						|  | [165, 42, 87], | 
					
						
						|  | [72, 145, 167], | 
					
						
						|  | [15, 158, 75], | 
					
						
						|  | [209, 89, 40], | 
					
						
						|  | [32, 21, 121], | 
					
						
						|  | [184, 20, 100], | 
					
						
						|  | [56, 135, 15], | 
					
						
						|  | [128, 92, 176], | 
					
						
						|  | [1, 119, 140], | 
					
						
						|  | [220, 151, 43], | 
					
						
						|  | [41, 97, 72], | 
					
						
						|  | [148, 38, 27], | 
					
						
						|  | [107, 86, 176], | 
					
						
						|  | [21, 26, 136], | 
					
						
						|  | [174, 27, 90], | 
					
						
						|  | [91, 96, 204], | 
					
						
						|  | [108, 50, 107], | 
					
						
						|  | [27, 45, 136], | 
					
						
						|  | [168, 200, 52], | 
					
						
						|  | [7, 102, 27], | 
					
						
						|  | [42, 93, 56], | 
					
						
						|  | [140, 52, 112], | 
					
						
						|  | [92, 107, 168], | 
					
						
						|  | [17, 118, 176], | 
					
						
						|  | [59, 50, 174], | 
					
						
						|  | [206, 40, 143], | 
					
						
						|  | [44, 19, 142], | 
					
						
						|  | [23, 168, 75], | 
					
						
						|  | [54, 57, 189], | 
					
						
						|  | [144, 21, 15], | 
					
						
						|  | [15, 176, 35], | 
					
						
						|  | [107, 19, 79], | 
					
						
						|  | [204, 52, 114], | 
					
						
						|  | [48, 173, 83], | 
					
						
						|  | [11, 120, 53], | 
					
						
						|  | [206, 104, 28], | 
					
						
						|  | [20, 31, 153], | 
					
						
						|  | [27, 21, 93], | 
					
						
						|  | [11, 206, 138], | 
					
						
						|  | [112, 30, 83], | 
					
						
						|  | [68, 91, 152], | 
					
						
						|  | [153, 13, 43], | 
					
						
						|  | [25, 114, 54], | 
					
						
						|  | [92, 27, 150], | 
					
						
						|  | [108, 42, 59], | 
					
						
						|  | [194, 77, 5], | 
					
						
						|  | [145, 48, 83], | 
					
						
						|  | [7, 113, 19], | 
					
						
						|  | [25, 92, 113], | 
					
						
						|  | [60, 168, 79], | 
					
						
						|  | [78, 33, 120], | 
					
						
						|  | [89, 176, 205], | 
					
						
						|  | [27, 200, 94], | 
					
						
						|  | [210, 67, 23], | 
					
						
						|  | [123, 89, 189], | 
					
						
						|  | [225, 56, 112], | 
					
						
						|  | [75, 156, 45], | 
					
						
						|  | [172, 104, 200], | 
					
						
						|  | [15, 170, 197], | 
					
						
						|  | [240, 133, 65], | 
					
						
						|  | [89, 156, 112], | 
					
						
						|  | [214, 88, 57], | 
					
						
						|  | [156, 134, 200], | 
					
						
						|  | [78, 57, 189], | 
					
						
						|  | [200, 78, 123], | 
					
						
						|  | [106, 120, 210], | 
					
						
						|  | [145, 56, 112], | 
					
						
						|  | [89, 120, 189], | 
					
						
						|  | [185, 206, 56], | 
					
						
						|  | [47, 99, 28], | 
					
						
						|  | [112, 189, 78], | 
					
						
						|  | [200, 112, 89], | 
					
						
						|  | [89, 145, 112], | 
					
						
						|  | [78, 106, 189], | 
					
						
						|  | [112, 78, 189], | 
					
						
						|  | [156, 112, 78], | 
					
						
						|  | [28, 210, 99], | 
					
						
						|  | [78, 89, 189], | 
					
						
						|  | [189, 78, 57], | 
					
						
						|  | [112, 200, 78], | 
					
						
						|  | [189, 47, 78], | 
					
						
						|  | [205, 112, 57], | 
					
						
						|  | [78, 145, 57], | 
					
						
						|  | [200, 78, 112], | 
					
						
						|  | [99, 89, 145], | 
					
						
						|  | [200, 156, 78], | 
					
						
						|  | [57, 78, 145], | 
					
						
						|  | [78, 57, 99], | 
					
						
						|  | [57, 78, 145], | 
					
						
						|  | [145, 112, 78], | 
					
						
						|  | [78, 89, 145], | 
					
						
						|  | [210, 99, 28], | 
					
						
						|  | [145, 78, 189], | 
					
						
						|  | [57, 200, 136], | 
					
						
						|  | [89, 156, 78], | 
					
						
						|  | [145, 78, 99], | 
					
						
						|  | [99, 28, 210], | 
					
						
						|  | [189, 78, 47], | 
					
						
						|  | [28, 210, 99], | 
					
						
						|  | [78, 145, 57], | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | labels_list = [] | 
					
						
						|  |  | 
					
						
						|  | with open(r'labels.txt', 'r') as fp: | 
					
						
						|  | for line in fp: | 
					
						
						|  | labels_list.append(line[:-1]) | 
					
						
						|  |  | 
					
						
						|  | colormap = np.asarray(ade_palette()) | 
					
						
						|  |  | 
					
						
						|  | def label_to_color_image(label): | 
					
						
						|  | if label.ndim != 2: | 
					
						
						|  | raise ValueError("Expect 2-D input label") | 
					
						
						|  |  | 
					
						
						|  | if np.max(label) >= len(colormap): | 
					
						
						|  | raise ValueError("label value too large.") | 
					
						
						|  | return colormap[label] | 
					
						
						|  |  | 
					
						
						|  | def draw_plot(pred_img, seg): | 
					
						
						|  | fig = plt.figure(figsize=(20, 15)) | 
					
						
						|  |  | 
					
						
						|  | grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) | 
					
						
						|  |  | 
					
						
						|  | plt.subplot(grid_spec[0]) | 
					
						
						|  | plt.imshow(pred_img) | 
					
						
						|  | plt.axis('off') | 
					
						
						|  | LABEL_NAMES = np.asarray(labels_list) | 
					
						
						|  | FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) | 
					
						
						|  | FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) | 
					
						
						|  |  | 
					
						
						|  | unique_labels = np.unique(seg.numpy().astype("uint8")) | 
					
						
						|  | ax = plt.subplot(grid_spec[1]) | 
					
						
						|  | plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") | 
					
						
						|  | ax.yaxis.tick_right() | 
					
						
						|  | plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) | 
					
						
						|  | plt.xticks([], []) | 
					
						
						|  | ax.tick_params(width=0.0, labelsize=25) | 
					
						
						|  | return fig | 
					
						
						|  |  | 
					
						
						|  | def sepia(input_img): | 
					
						
						|  | input_img = Image.fromarray(input_img) | 
					
						
						|  |  | 
					
						
						|  | inputs = feature_extractor(images=input_img, return_tensors="tf") | 
					
						
						|  | outputs = model(**inputs) | 
					
						
						|  | logits = outputs.logits | 
					
						
						|  |  | 
					
						
						|  | logits = tf.transpose(logits, [0, 2, 3, 1]) | 
					
						
						|  | logits = tf.image.resize( | 
					
						
						|  | logits, input_img.size[::-1] | 
					
						
						|  | ) | 
					
						
						|  | seg = tf.math.argmax(logits, axis=-1)[0] | 
					
						
						|  |  | 
					
						
						|  | color_seg = np.zeros( | 
					
						
						|  | (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 | 
					
						
						|  | ) | 
					
						
						|  | for label, color in enumerate(colormap): | 
					
						
						|  | color_seg[seg.numpy() == label, :] = color | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 | 
					
						
						|  | pred_img = pred_img.astype(np.uint8) | 
					
						
						|  |  | 
					
						
						|  | fig = draw_plot(pred_img, seg) | 
					
						
						|  | return fig | 
					
						
						|  |  | 
					
						
						|  | demo = gr.Interface(fn=sepia, | 
					
						
						|  | inputs=gr.Image(shape=(400, 600)), | 
					
						
						|  | outputs=['plot'], | 
					
						
						|  | examples=["ADE_val_00000001.jpeg", "ADE_val_00001159.jpg", "ADE_val_00001248.jpg", "ADE_val_00001472.jpg"], | 
					
						
						|  | allow_flagging='never') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | demo.launch() | 
					
						
						|  |  |