Spaces:
Running
Running
Upload 2 files
Browse files
app.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
# --- 1. Загрузка и подготовка данных ---
|
| 6 |
+
|
| 7 |
+
def load_data(json_path='data.json'):
|
| 8 |
+
"""Загружает данные из JSON и преобразует их в pandas DataFrame."""
|
| 9 |
+
with open(json_path, 'r', encoding='utf-8') as f:
|
| 10 |
+
data = json.load(f)
|
| 11 |
+
|
| 12 |
+
df = pd.DataFrame(data)
|
| 13 |
+
|
| 14 |
+
# --- ИСПРАВЛЕНИЕ: Преобразуем колонку с датой в формат datetime ---
|
| 15 |
+
# dayfirst=True указывает pandas, что в формате ДД/ММ/ГГГГ день идет первым.
|
| 16 |
+
df['test_date'] = pd.to_datetime(df['test_date'], dayfirst=True)
|
| 17 |
+
|
| 18 |
+
return df
|
| 19 |
+
|
| 20 |
+
# --- 2. Логика фильтрации и обновления таблицы ---
|
| 21 |
+
|
| 22 |
+
def update_leaderboard(data_df, filter_type, search_query, show_outdated):
|
| 23 |
+
"""Фильтрует DataFrame на основе выбранного типа, поискового запроса и флага устаревших данных."""
|
| 24 |
+
|
| 25 |
+
# Шаг 1: Фильтрация по устаревшим данным
|
| 26 |
+
if not show_outdated:
|
| 27 |
+
# Скрываем модели с пометкой об устаревших данных
|
| 28 |
+
filtered_df = data_df[~data_df['notes'].str.contains('устаревших данных', na=False, case=False)].copy()
|
| 29 |
+
else:
|
| 30 |
+
filtered_df = data_df.copy()
|
| 31 |
+
|
| 32 |
+
# Шаг 2: Фильтрация по типу
|
| 33 |
+
if filter_type == "Только войсклонинг":
|
| 34 |
+
filtered_df = filtered_df[filtered_df['type'] == 'voice_cloning'].copy()
|
| 35 |
+
elif filter_type == "Без войсклонинга":
|
| 36 |
+
filtered_df = filtered_df[filtered_df['type'] == 'single_speaker'].copy()
|
| 37 |
+
# else: "Все модели" - оставляем как есть
|
| 38 |
+
|
| 39 |
+
# Шаг 3: Фильтрация по поисковому запросу
|
| 40 |
+
if search_query:
|
| 41 |
+
query = search_query.lower()
|
| 42 |
+
filtered_df = filtered_df[
|
| 43 |
+
filtered_df['engine'].str.lower().str.contains(query) |
|
| 44 |
+
filtered_df['voice'].str.lower().str.contains(query)
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
# Шаг 4: Подготовка DataFrame для отображения
|
| 48 |
+
|
| 49 |
+
# --- ИСПРАВЛЕНИЕ: Форматируем дату в 'ГГГГ-ММ-ДД' для корректной сортировки в UI ---
|
| 50 |
+
# Создаем копию, чтобы не изменять оригинальный DataFrame в gr.State
|
| 51 |
+
display_df = filtered_df.copy()
|
| 52 |
+
display_df['test_date'] = display_df['test_date'].dt.strftime('%Y-%m-%d')
|
| 53 |
+
|
| 54 |
+
column_mapping = {
|
| 55 |
+
"engine": "Движок", "voice": "Голос", "test_date": "Дата",
|
| 56 |
+
"hardware": "Железо", "utmos": "UTMOS (↑)", "cer": "CER (↓)",
|
| 57 |
+
"encodec_fad": "FAD (↓)", "similarity_avg": "Похожесть Avg (↑)",
|
| 58 |
+
"xrt_gpu": "xRT GPU (↓)", "xrt_cpu": "xRT CPU (↓)", "notes": "Примечания"
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
display_df = display_df[column_mapping.keys()].rename(columns=column_mapping)
|
| 62 |
+
|
| 63 |
+
return display_df
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# --- 3. Создание интерфейса Gradio ---
|
| 67 |
+
|
| 68 |
+
# Загружаем данные один раз при старте приложения
|
| 69 |
+
original_df = load_data()
|
| 70 |
+
|
| 71 |
+
# Сортируем по-умолчанию по дате (самые новые вверху), скрывая устаревшие
|
| 72 |
+
initial_display_df = update_leaderboard(original_df, "Все модели", "", show_outdated=False)
|
| 73 |
+
initial_display_df = initial_display_df.sort_values(by="Дата", ascending=False)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
with gr.Blocks(theme=gr.themes.Soft(), css="footer {visibility: hidden}") as demo:
|
| 77 |
+
gr.Markdown("# 🏆 Лидерборд TTS моделей для русского языка")
|
| 78 |
+
gr.Markdown(
|
| 79 |
+
"""
|
| 80 |
+
Этот лидерборд предназначен для сравнения различных Text-to-Speech моделей.
|
| 81 |
+
|
| 82 |
+
### Описание метрик:
|
| 83 |
+
- **UTMOS (↑)**: Оценка качества речи, основанная на мнении слушателей (Mean Opinion Score). **Больше — лучше.**
|
| 84 |
+
- **CER (↓)**: Character Error Rate (коэффициент ошибок по символам). Показывает, насколько часто синтез делает ошибки в произношении. **Меньше — лучше.**
|
| 85 |
+
- **FAD (↓)**: Fréchet Audio Distance. Объективная метрика, измеряющая расстояние между распределениями реального и синтезированного аудио. **Меньше — лучше.**
|
| 86 |
+
- **Похожесть Avg (↑)**: Средняя оценка схожести голоса с оригиналом при клонировании. **Больше — лучше.**
|
| 87 |
+
- **xRT GPU/CPU (↓)**: Real-Time Factor. Во сколько раз синтез быстрее (если < 1) или медленнее (если > 1) реального времени на GPU/CPU. **Меньше — лучше.**
|
| 88 |
+
- **Железо**: Тип оборудования, на котором производился тест (Cloud - облачный сервис, Local GPU/CPU - локальное железо, RTX 4090 - конкретная видеокарта).
|
| 89 |
+
|
| 90 |
+
*Кликните на заголовок колонки для сортировки. По умолчанию отсортировано по дате (сначала новые).*
|
| 91 |
+
"""
|
| 92 |
+
)
|
| 93 |
+
gr.Markdown("✉️ Чтобы добавить свою модель, а также вопросы и предложения пишите в Telegram [@bceloss](https://t.me/bceloss)")
|
| 94 |
+
gr.Markdown('✉️ Добавляйтесь в чат "Распознавание и синтез речи" [@speech_recognition_ru](https://t.me/speech_recognition_ru)')
|
| 95 |
+
gr.Markdown('👥 Авторы: Nikolay Shmyrev [@nshmyrev]((https://t.me/nshmyrev)), Denis Petrov [@bceloss](https://t.me/bceloss)')
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
with gr.Row():
|
| 100 |
+
with gr.Column(scale=3):
|
| 101 |
+
filter_radio = gr.Radio(
|
| 102 |
+
["Все модели", "Только войсклонинг", "Без войсклонинга"],
|
| 103 |
+
label="Тип модели",
|
| 104 |
+
value="Все модели"
|
| 105 |
+
)
|
| 106 |
+
with gr.Column(scale=3):
|
| 107 |
+
search_box = gr.Textbox(
|
| 108 |
+
label="Поиск по названию движка или голоса",
|
| 109 |
+
placeholder="Например, Silero, Vosk, Multi..."
|
| 110 |
+
)
|
| 111 |
+
with gr.Column(scale=2):
|
| 112 |
+
show_outdated_checkbox = gr.Checkbox(
|
| 113 |
+
label="Показать модели с устаревшими данными",
|
| 114 |
+
value=False,
|
| 115 |
+
info="⚠️ Данные этих моделей могут быть неточными"
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Информационное сообщение о скрытых моделях
|
| 119 |
+
outdated_info = gr.Markdown(visible=False)
|
| 120 |
+
|
| 121 |
+
leaderboard_df = gr.DataFrame(
|
| 122 |
+
value=initial_display_df,
|
| 123 |
+
interactive=True,
|
| 124 |
+
height=700
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Используем gr.State для передачи полного DataFrame с правильными типами данных
|
| 128 |
+
df_state = gr.State(original_df)
|
| 129 |
+
|
| 130 |
+
def on_change(filter_type, search_query, show_outdated, data_df):
|
| 131 |
+
"""Обновляет таблицу и показывает информацию о скрытых моделях."""
|
| 132 |
+
updated_df = update_leaderboard(data_df, filter_type, search_query, show_outdated)
|
| 133 |
+
|
| 134 |
+
# Подсчитываем количество скрытых моделей с устаревшими данными
|
| 135 |
+
if not show_outdated:
|
| 136 |
+
outdated_count = data_df[data_df['notes'].str.contains('устаревших данных', na=False, case=False)].shape[0]
|
| 137 |
+
if outdated_count > 0:
|
| 138 |
+
info_text = f"ℹ️ **Скрыто моделей с устаревшими данными: {outdated_count}**. Включите опцию выше, чтобы показать их."
|
| 139 |
+
return updated_df, gr.update(value=info_text, visible=True)
|
| 140 |
+
|
| 141 |
+
return updated_df, gr.update(visible=False)
|
| 142 |
+
|
| 143 |
+
# Связываем все элементы управления с функцией обновления
|
| 144 |
+
filter_radio.change(
|
| 145 |
+
fn=on_change,
|
| 146 |
+
inputs=[filter_radio, search_box, show_outdated_checkbox, df_state],
|
| 147 |
+
outputs=[leaderboard_df, outdated_info]
|
| 148 |
+
)
|
| 149 |
+
search_box.change(
|
| 150 |
+
fn=on_change,
|
| 151 |
+
inputs=[filter_radio, search_box, show_outdated_checkbox, df_state],
|
| 152 |
+
outputs=[leaderboard_df, outdated_info]
|
| 153 |
+
)
|
| 154 |
+
show_outdated_checkbox.change(
|
| 155 |
+
fn=on_change,
|
| 156 |
+
inputs=[filter_radio, search_box, show_outdated_checkbox, df_state],
|
| 157 |
+
outputs=[leaderboard_df, outdated_info]
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Показываем информацию о скрытых моделях при загрузке
|
| 161 |
+
demo.load(
|
| 162 |
+
fn=lambda: f"ℹ️ **Скрыто моделей с устаревшими данными: {original_df[original_df['notes'].str.contains('устаревших данных', na=False, case=False)].shape[0]}**. Включите опцию выше, чтобы показать их.",
|
| 163 |
+
outputs=outdated_info
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# --- 4. Запуск приложения ---
|
| 167 |
+
if __name__ == "__main__":
|
| 168 |
+
demo.launch()
|
data.json
ADDED
|
@@ -0,0 +1,467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"engine": "Silero v3_1",
|
| 4 |
+
"voice": "Aidar",
|
| 5 |
+
"test_date": "21/06/2024",
|
| 6 |
+
"type": "single_speaker",
|
| 7 |
+
"cer": 0.7,
|
| 8 |
+
"xrt_gpu": 0.0177,
|
| 9 |
+
"xrt_cpu": 0.1256,
|
| 10 |
+
"utmos": 2.544,
|
| 11 |
+
"similarity_avg": null,
|
| 12 |
+
"similarity_min": null,
|
| 13 |
+
"encodec_fad": 97.36,
|
| 14 |
+
"hardware": "Local GPU",
|
| 15 |
+
"notes": ""
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"engine": "Silero v3_1",
|
| 19 |
+
"voice": "Baya",
|
| 20 |
+
"test_date": "21/06/2024",
|
| 21 |
+
"type": "single_speaker",
|
| 22 |
+
"cer": 0.7,
|
| 23 |
+
"xrt_gpu": 0.0177,
|
| 24 |
+
"xrt_cpu": 0.1256,
|
| 25 |
+
"utmos": 2.978,
|
| 26 |
+
"similarity_avg": null,
|
| 27 |
+
"similarity_min": null,
|
| 28 |
+
"encodec_fad": 170.53,
|
| 29 |
+
"hardware": "Local GPU",
|
| 30 |
+
"notes": ""
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"engine": "Silero 4",
|
| 34 |
+
"voice": "Aidar",
|
| 35 |
+
"test_date": "21/06/2024",
|
| 36 |
+
"type": "single_speaker",
|
| 37 |
+
"cer": 1.0,
|
| 38 |
+
"xrt_gpu": 0.0149,
|
| 39 |
+
"xrt_cpu": 0.0544,
|
| 40 |
+
"utmos": 1.755,
|
| 41 |
+
"similarity_avg": null,
|
| 42 |
+
"similarity_min": null,
|
| 43 |
+
"encodec_fad": 79.33,
|
| 44 |
+
"hardware": "Local GPU",
|
| 45 |
+
"notes": ""
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"engine": "Silero 4",
|
| 49 |
+
"voice": "Baya",
|
| 50 |
+
"test_date": "21/06/2024",
|
| 51 |
+
"type": "single_speaker",
|
| 52 |
+
"cer": 0.9,
|
| 53 |
+
"xrt_gpu": 0.0149,
|
| 54 |
+
"xrt_cpu": 0.0544,
|
| 55 |
+
"utmos": 2.144,
|
| 56 |
+
"similarity_avg": null,
|
| 57 |
+
"similarity_min": null,
|
| 58 |
+
"encodec_fad": 118.63,
|
| 59 |
+
"hardware": "Local GPU",
|
| 60 |
+
"notes": ""
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"engine": "Vosk-TTS 0.9",
|
| 64 |
+
"voice": "Multi",
|
| 65 |
+
"test_date": "12/06/2025",
|
| 66 |
+
"type": "multi_speaker",
|
| 67 |
+
"cer": 0.6,
|
| 68 |
+
"xrt_gpu": 0.07,
|
| 69 |
+
"xrt_cpu": 0.3,
|
| 70 |
+
"utmos": 3.29,
|
| 71 |
+
"similarity_avg": 0.875,
|
| 72 |
+
"similarity_min": 0.600,
|
| 73 |
+
"encodec_fad": 0.81,
|
| 74 |
+
"hardware": "Local GPU",
|
| 75 |
+
"notes": ""
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"engine": "TeraTTS",
|
| 79 |
+
"voice": "Natasha",
|
| 80 |
+
"test_date": "21/06/2024",
|
| 81 |
+
"type": "single_speaker",
|
| 82 |
+
"cer": 1.6,
|
| 83 |
+
"xrt_gpu": null,
|
| 84 |
+
"xrt_cpu": 0.1945,
|
| 85 |
+
"utmos": 3.281,
|
| 86 |
+
"similarity_avg": null,
|
| 87 |
+
"similarity_min": null,
|
| 88 |
+
"encodec_fad": 70.10,
|
| 89 |
+
"hardware": "Local CPU",
|
| 90 |
+
"notes": ""
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"engine": "UtrobinTTS",
|
| 94 |
+
"voice": "Male",
|
| 95 |
+
"test_date": "21/06/2024",
|
| 96 |
+
"type": "single_speaker",
|
| 97 |
+
"cer": 2.1,
|
| 98 |
+
"xrt_gpu": 0.0265,
|
| 99 |
+
"xrt_cpu": 0.1323,
|
| 100 |
+
"utmos": 3.186,
|
| 101 |
+
"similarity_avg": null,
|
| 102 |
+
"similarity_min": null,
|
| 103 |
+
"encodec_fad": 46.14,
|
| 104 |
+
"hardware": "Local GPU",
|
| 105 |
+
"notes": ""
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"engine": "XTTS2",
|
| 109 |
+
"voice": "Multi",
|
| 110 |
+
"test_date": "21/06/2024",
|
| 111 |
+
"type": "voice_cloning",
|
| 112 |
+
"cer": 2.7,
|
| 113 |
+
"xrt_gpu": 0.3458,
|
| 114 |
+
"xrt_cpu": null,
|
| 115 |
+
"utmos": 3.035,
|
| 116 |
+
"similarity_avg": 0.762,
|
| 117 |
+
"similarity_min": 0.468,
|
| 118 |
+
"encodec_fad": 5.42,
|
| 119 |
+
"hardware": "Local GPU",
|
| 120 |
+
"notes": "Сравнение проводилось на устаревших данных. Данные не верны!"
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"engine": "Vosk-TTS GPT",
|
| 124 |
+
"voice": "Multi",
|
| 125 |
+
"test_date": "21/06/2024",
|
| 126 |
+
"type": "voice_cloning",
|
| 127 |
+
"cer": 2.1,
|
| 128 |
+
"xrt_gpu": 0.2690,
|
| 129 |
+
"xrt_cpu": null,
|
| 130 |
+
"utmos": 3.381,
|
| 131 |
+
"similarity_avg": 0.814,
|
| 132 |
+
"similarity_min": 0.544,
|
| 133 |
+
"encodec_fad": 5.89,
|
| 134 |
+
"hardware": "Local GPU",
|
| 135 |
+
"notes": "Сравнение проводилось на устаревших данных. Данные не верны!"
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"engine": "Piper",
|
| 139 |
+
"voice": "Irina",
|
| 140 |
+
"test_date": "21/06/2024",
|
| 141 |
+
"type": "single_speaker",
|
| 142 |
+
"cer": 1.4,
|
| 143 |
+
"xrt_gpu": null,
|
| 144 |
+
"xrt_cpu": 0.045,
|
| 145 |
+
"utmos": 3.672,
|
| 146 |
+
"similarity_avg": null,
|
| 147 |
+
"similarity_min": null,
|
| 148 |
+
"encodec_fad": 74.98,
|
| 149 |
+
"hardware": "Local CPU",
|
| 150 |
+
"notes": ""
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"engine": "Piper",
|
| 154 |
+
"voice": "Ruslan",
|
| 155 |
+
"test_date": "21/06/2024",
|
| 156 |
+
"type": "single_speaker",
|
| 157 |
+
"cer": 3.0,
|
| 158 |
+
"xrt_gpu": null,
|
| 159 |
+
"xrt_cpu": 0.045,
|
| 160 |
+
"utmos": 2.975,
|
| 161 |
+
"similarity_avg": null,
|
| 162 |
+
"similarity_min": null,
|
| 163 |
+
"encodec_fad": 72.22,
|
| 164 |
+
"hardware": "Local CPU",
|
| 165 |
+
"notes": ""
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"engine": "BeneGes",
|
| 169 |
+
"voice": "Ruslan",
|
| 170 |
+
"test_date": "21/06/2024",
|
| 171 |
+
"type": "single_speaker",
|
| 172 |
+
"cer": 2.4,
|
| 173 |
+
"xrt_gpu": null,
|
| 174 |
+
"xrt_cpu": 0.321,
|
| 175 |
+
"utmos": 2.537,
|
| 176 |
+
"similarity_avg": null,
|
| 177 |
+
"similarity_min": null,
|
| 178 |
+
"encodec_fad": 63.02,
|
| 179 |
+
"hardware": "Local CPU",
|
| 180 |
+
"notes": ""
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"engine": "Tortoise Ruslan",
|
| 184 |
+
"voice": "Multi",
|
| 185 |
+
"test_date": "21/06/2024",
|
| 186 |
+
"type": "voice_cloning",
|
| 187 |
+
"cer": 6.2,
|
| 188 |
+
"xrt_gpu": 25.03,
|
| 189 |
+
"xrt_cpu": null,
|
| 190 |
+
"utmos": 2.893,
|
| 191 |
+
"similarity_avg": 0.660,
|
| 192 |
+
"similarity_min": 0.483,
|
| 193 |
+
"encodec_fad": 14.21,
|
| 194 |
+
"hardware": "Local GPU",
|
| 195 |
+
"notes": "Сравнение проводилось на устаревших данных. Данные не верны!"
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"engine": "Bark Small",
|
| 199 |
+
"voice": "Ru_4",
|
| 200 |
+
"test_date": "21/06/2024",
|
| 201 |
+
"type": "single_speaker",
|
| 202 |
+
"cer": 10.3,
|
| 203 |
+
"xrt_gpu": 1.201,
|
| 204 |
+
"xrt_cpu": null,
|
| 205 |
+
"utmos": 2.554,
|
| 206 |
+
"similarity_avg": null,
|
| 207 |
+
"similarity_min": null,
|
| 208 |
+
"encodec_fad": 61.71,
|
| 209 |
+
"hardware": "Local GPU",
|
| 210 |
+
"notes": ""
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"engine": "EdgeTTS",
|
| 214 |
+
"voice": "Dmitry",
|
| 215 |
+
"test_date": "21/06/2024",
|
| 216 |
+
"type": "single_speaker",
|
| 217 |
+
"cer": 0.7,
|
| 218 |
+
"xrt_gpu": null,
|
| 219 |
+
"xrt_cpu": 0.076,
|
| 220 |
+
"utmos": 3.565,
|
| 221 |
+
"similarity_avg": null,
|
| 222 |
+
"similarity_min": null,
|
| 223 |
+
"encodec_fad": 32.69,
|
| 224 |
+
"hardware": "Cloud",
|
| 225 |
+
"notes": "cloud"
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"engine": "EdgeTTS",
|
| 229 |
+
"voice": "Svetlana",
|
| 230 |
+
"test_date": "21/06/2024",
|
| 231 |
+
"type": "single_speaker",
|
| 232 |
+
"cer": 0.7,
|
| 233 |
+
"xrt_gpu": null,
|
| 234 |
+
"xrt_cpu": 0.076,
|
| 235 |
+
"utmos": 3.513,
|
| 236 |
+
"similarity_avg": null,
|
| 237 |
+
"similarity_min": null,
|
| 238 |
+
"encodec_fad": 30.60,
|
| 239 |
+
"hardware": "Cloud",
|
| 240 |
+
"notes": "cloud"
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"engine": "Yandex",
|
| 244 |
+
"voice": "Alexander",
|
| 245 |
+
"test_date": "21/06/2024",
|
| 246 |
+
"type": "single_speaker",
|
| 247 |
+
"cer": 0.6,
|
| 248 |
+
"xrt_gpu": null,
|
| 249 |
+
"xrt_cpu": 0.028,
|
| 250 |
+
"utmos": 3.413,
|
| 251 |
+
"similarity_avg": null,
|
| 252 |
+
"similarity_min": null,
|
| 253 |
+
"encodec_fad": 54.10,
|
| 254 |
+
"hardware": "Cloud",
|
| 255 |
+
"notes": "cloud"
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"engine": "Yandex",
|
| 259 |
+
"voice": "Marina",
|
| 260 |
+
"test_date": "21/06/2024",
|
| 261 |
+
"type": "single_speaker",
|
| 262 |
+
"cer": 0.6,
|
| 263 |
+
"xrt_gpu": null,
|
| 264 |
+
"xrt_cpu": 0.028,
|
| 265 |
+
"utmos": 3.482,
|
| 266 |
+
"similarity_avg": null,
|
| 267 |
+
"similarity_min": null,
|
| 268 |
+
"encodec_fad": 26.23,
|
| 269 |
+
"hardware": "Cloud",
|
| 270 |
+
"notes": "cloud"
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"engine": "Sber",
|
| 274 |
+
"voice": "Boris 24",
|
| 275 |
+
"test_date": "03/11/2024",
|
| 276 |
+
"type": "single_speaker",
|
| 277 |
+
"cer": 0.7,
|
| 278 |
+
"xrt_gpu": null,
|
| 279 |
+
"xrt_cpu": 0.31,
|
| 280 |
+
"utmos": 3.747,
|
| 281 |
+
"similarity_avg": null,
|
| 282 |
+
"similarity_min": null,
|
| 283 |
+
"encodec_fad": 26.21,
|
| 284 |
+
"hardware": "Cloud",
|
| 285 |
+
"notes": "cloud"
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"engine": "Sber",
|
| 289 |
+
"voice": "Alexandra 24",
|
| 290 |
+
"test_date": "03/11/2024",
|
| 291 |
+
"type": "single_speaker",
|
| 292 |
+
"cer": 0.8,
|
| 293 |
+
"xrt_gpu": null,
|
| 294 |
+
"xrt_cpu": 0.30,
|
| 295 |
+
"utmos": 3.196,
|
| 296 |
+
"similarity_avg": null,
|
| 297 |
+
"similarity_min": null,
|
| 298 |
+
"encodec_fad": 32.04,
|
| 299 |
+
"hardware": "Cloud",
|
| 300 |
+
"notes": "cloud"
|
| 301 |
+
},
|
| 302 |
+
{
|
| 303 |
+
"engine": "FishSpeech 1.5",
|
| 304 |
+
"voice": "Multi",
|
| 305 |
+
"test_date": "07/08/2025",
|
| 306 |
+
"type": "voice_cloning",
|
| 307 |
+
"cer": 1.5,
|
| 308 |
+
"xrt_gpu": 1.7,
|
| 309 |
+
"xrt_cpu": null,
|
| 310 |
+
"utmos": 3.183,
|
| 311 |
+
"similarity_avg": 0.757,
|
| 312 |
+
"similarity_min": 0.535,
|
| 313 |
+
"encodec_fad": 2.37,
|
| 314 |
+
"hardware": "Local GPU",
|
| 315 |
+
"notes": ""
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"engine": "Tinkoff",
|
| 319 |
+
"voice": "Alyona",
|
| 320 |
+
"test_date": "14/12/2024",
|
| 321 |
+
"type": "single_speaker",
|
| 322 |
+
"cer": 0.7,
|
| 323 |
+
"xrt_gpu": null,
|
| 324 |
+
"xrt_cpu": 0.16,
|
| 325 |
+
"utmos": 3.634,
|
| 326 |
+
"similarity_avg": null,
|
| 327 |
+
"similarity_min": null,
|
| 328 |
+
"encodec_fad": 172.9,
|
| 329 |
+
"hardware": "Cloud",
|
| 330 |
+
"notes": "cloud"
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"engine": "Tinkoff",
|
| 334 |
+
"voice": "Dima",
|
| 335 |
+
"test_date": "20/03/2025",
|
| 336 |
+
"type": "single_speaker",
|
| 337 |
+
"cer": 0.8,
|
| 338 |
+
"xrt_gpu": null,
|
| 339 |
+
"xrt_cpu": 0.16,
|
| 340 |
+
"utmos": 3.568,
|
| 341 |
+
"similarity_avg": null,
|
| 342 |
+
"similarity_min": null,
|
| 343 |
+
"encodec_fad": 129.2,
|
| 344 |
+
"hardware": "Cloud",
|
| 345 |
+
"notes": "cloud"
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"engine": "Tinkoff",
|
| 349 |
+
"voice": "Anna",
|
| 350 |
+
"test_date": "20/03/2025",
|
| 351 |
+
"type": "single_speaker",
|
| 352 |
+
"cer": 0.8,
|
| 353 |
+
"xrt_gpu": null,
|
| 354 |
+
"xrt_cpu": 0.16,
|
| 355 |
+
"utmos": 2.919,
|
| 356 |
+
"similarity_avg": null,
|
| 357 |
+
"similarity_min": null,
|
| 358 |
+
"encodec_fad": 120.5,
|
| 359 |
+
"hardware": "Cloud",
|
| 360 |
+
"notes": "cloud"
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"engine": "F5-TTS Misha V2",
|
| 364 |
+
"voice": "Multi",
|
| 365 |
+
"test_date": "07/08/2025",
|
| 366 |
+
"type": "voice_cloning",
|
| 367 |
+
"cer": 2.4,
|
| 368 |
+
"xrt_gpu": 1.37,
|
| 369 |
+
"xrt_cpu": null,
|
| 370 |
+
"utmos": 3.157,
|
| 371 |
+
"similarity_avg": 0.821,
|
| 372 |
+
"similarity_min": null,
|
| 373 |
+
"encodec_fad": 1.9,
|
| 374 |
+
"hardware": "Local GPU",
|
| 375 |
+
"notes": ""
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"engine": "ESpeech-TTS-1 [RL] V2",
|
| 379 |
+
"voice": "Multi",
|
| 380 |
+
"test_date": "17/08/2025",
|
| 381 |
+
"type": "voice_cloning",
|
| 382 |
+
"cer": 2.3,
|
| 383 |
+
"xrt_gpu": 0.19,
|
| 384 |
+
"xrt_cpu": null,
|
| 385 |
+
"utmos": 3.289,
|
| 386 |
+
"similarity_avg": 0.826,
|
| 387 |
+
"similarity_min": null,
|
| 388 |
+
"encodec_fad": 2.89,
|
| 389 |
+
"hardware": "RTX 4090",
|
| 390 |
+
"notes": ""
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"engine": "ESpeech-TTS-1 [SFT] 265K",
|
| 394 |
+
"voice": "Multi",
|
| 395 |
+
"test_date": "17/08/2025",
|
| 396 |
+
"type": "voice_cloning",
|
| 397 |
+
"cer": 2.9,
|
| 398 |
+
"xrt_gpu": 0.19,
|
| 399 |
+
"xrt_cpu": null,
|
| 400 |
+
"utmos": 3.136,
|
| 401 |
+
"similarity_avg": 0.827,
|
| 402 |
+
"similarity_min": null,
|
| 403 |
+
"encodec_fad": 2.66,
|
| 404 |
+
"hardware": "RTX 4090",
|
| 405 |
+
"notes": ""
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"engine": "ESpeech-TTS-1 [RL] V1",
|
| 409 |
+
"voice": "Multi",
|
| 410 |
+
"test_date": "17/08/2025",
|
| 411 |
+
"type": "voice_cloning",
|
| 412 |
+
"cer": 2.3,
|
| 413 |
+
"xrt_gpu": 0.19,
|
| 414 |
+
"xrt_cpu": null,
|
| 415 |
+
"utmos": 3.239,
|
| 416 |
+
"similarity_avg": 0.828,
|
| 417 |
+
"similarity_min": null,
|
| 418 |
+
"encodec_fad": 2.54,
|
| 419 |
+
"hardware": "RTX 4090",
|
| 420 |
+
"notes": ""
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"engine": "ESpeech-TTS-1 [SFT] 95K",
|
| 424 |
+
"voice": "Multi",
|
| 425 |
+
"test_date": "17/08/2025",
|
| 426 |
+
"type": "voice_cloning",
|
| 427 |
+
"cer": 1.6,
|
| 428 |
+
"xrt_gpu": 0.19,
|
| 429 |
+
"xrt_cpu": null,
|
| 430 |
+
"utmos": 3.198,
|
| 431 |
+
"similarity_avg": 0.830,
|
| 432 |
+
"similarity_min": null,
|
| 433 |
+
"encodec_fad": 3.06,
|
| 434 |
+
"hardware": "RTX 4090",
|
| 435 |
+
"notes": ""
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"engine": "ESpeech-TTS-1 PODCASTER [SFT]",
|
| 439 |
+
"voice": "Multi",
|
| 440 |
+
"test_date": "18/08/2025",
|
| 441 |
+
"type": "voice_cloning",
|
| 442 |
+
"cer": 1.3,
|
| 443 |
+
"xrt_gpu": 0.19,
|
| 444 |
+
"xrt_cpu": null,
|
| 445 |
+
"utmos": 3.203,
|
| 446 |
+
"similarity_avg": 0.833,
|
| 447 |
+
"similarity_min": null,
|
| 448 |
+
"encodec_fad": 3.06,
|
| 449 |
+
"hardware": "RTX 4090",
|
| 450 |
+
"notes": "Trained ONLY Podcasts"
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"engine": "ElevenLabs Multilingual V2",
|
| 454 |
+
"voice": "Multi",
|
| 455 |
+
"test_date": "17/08/2025",
|
| 456 |
+
"type": "voice_cloning",
|
| 457 |
+
"cer": 1.2,
|
| 458 |
+
"xrt_gpu": null,
|
| 459 |
+
"xrt_cpu": null,
|
| 460 |
+
"utmos": 3.309,
|
| 461 |
+
"similarity_avg": 0.780,
|
| 462 |
+
"similarity_min": null,
|
| 463 |
+
"encodec_fad": 3.05,
|
| 464 |
+
"hardware": "Cloud",
|
| 465 |
+
"notes": "cloud"
|
| 466 |
+
}
|
| 467 |
+
]
|