ViktorDo commited on
Commit
de550eb
·
verified ·
1 Parent(s): 4e3a129

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +107 -0
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import torch.nn.functional as F
4
+ import numpy as np
5
+ from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
6
+ from PIL import Image
7
+ import os
8
+ from functools import partial
9
+
10
+
11
+ def resize_image(image, target_size=1024):
12
+ h_img, w_img = image.size
13
+ if h_img < w_img:
14
+ new_h, new_w = target_size, int(w_img * (target_size / h_img))
15
+ else:
16
+ new_h, new_w = int(h_img * (target_size / w_img)), target_size
17
+
18
+ resized_img = image.resize((new_h, new_w))
19
+ return resized_img
20
+
21
+ def segment_image(image, preprocessor, model, crop_size = (1024, 1024), num_classes = 40):
22
+ print(type(image))
23
+
24
+ h_crop, w_crop = crop_size
25
+ print(image.size)
26
+
27
+ img = torch.Tensor(np.array(resize_image(image, target_size=1024)).transpose(2, 0, 1)).unsqueeze(0).to(device)
28
+ batch_size, _, h_img, w_img = img.size()
29
+ print(img.size())
30
+
31
+ h_grids = int(np.round(3/2*h_img/h_crop)) if h_img > h_crop else 1
32
+ w_grids = int(np.round(3/2*w_img/w_crop)) if w_img > w_crop else 1
33
+ print(h_grids, w_grids)
34
+
35
+ h_stride = int((h_img - h_crop + h_grids -1)/(h_grids -1)) if h_grids > 1 else h_crop
36
+ w_stride = int((w_img - w_crop + w_grids -1)/(w_grids -1)) if w_grids > 1 else w_crop
37
+ print(h_stride, w_stride)
38
+
39
+ preds = img.new_zeros((batch_size, num_classes, h_img, w_img))
40
+ count_mat = img.new_zeros((batch_size, 1, h_img, w_img))
41
+
42
+ for h_idx in range(h_grids):
43
+ for w_idx in range(w_grids):
44
+ y1 = h_idx * h_stride
45
+ x1 = w_idx * w_stride
46
+ y2 = min(y1 + h_crop, h_img)
47
+ x2 = min(x1 + w_crop, w_img)
48
+ y1 = max(y2 - h_crop, 0)
49
+ x1 = max(x2 - w_crop, 0)
50
+ crop_img = img[:, :, y1:y2, x1:x2]
51
+ print(x1, x2, y1, y2)
52
+ with torch.no_grad():
53
+ inputs = preprocessor(crop_img, return_tensors = "pt")
54
+ outputs = model(**inputs)
55
+
56
+ resized_logits = F.interpolate(
57
+ outputs.logits[0].unsqueeze(dim=0), size=crop_img.shape[-2:], mode="bilinear", align_corners=False
58
+ )
59
+ preds += F.pad(resized_logits,
60
+ (int(x1), int(preds.shape[3] - x2), int(y1),
61
+ int(preds.shape[2] - y2)))
62
+ count_mat[:, :, y1:y2, x1:x2] += 1
63
+
64
+ assert (count_mat == 0).sum() == 0
65
+ preds = preds / count_mat
66
+
67
+ preds = preds.argmax(dim=1)
68
+
69
+ preds = F.interpolate(preds.unsqueeze(0).type(torch.uint8), size=image.size[::-1], mode='nearest')
70
+ label_pred = preds.squeeze().cpu().numpy()
71
+
72
+
73
+ seg_info = [(label_pred == int(id), label) for id, label in id2label.items()]
74
+ return (image, seg_info)
75
+
76
+
77
+ if __name__ == "__main__":
78
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
79
+ print(device)
80
+
81
+ # Load model and processor
82
+ preprocessor = SegformerImageProcessor.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024")
83
+ model = SegformerForSemanticSegmentation.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024").to(device)
84
+ model.eval()
85
+
86
+ id2label = {"1": "seagrass", "2": "trash", "3": "other coral dead", "4": "other coral bleached", "5": "sand", "6": "other coral alive", "7": "human", "8": "transect tools", "9": "fish", "10": "algae covered substrate", "11": "other animal", "12": "unknown hard substrate", "13": "background", "14": "dark", "15": "transect line", "16": "massive/meandering bleached", "17": "massive/meandering alive", "18": "rubble", "19": "branching bleached", "20": "branching dead", "21": "millepora", "22": "branching alive", "23": "massive/meandering dead", "24": "clam", "25": "acropora alive", "26": "sea cucumber", "27": "turbinaria", "28": "table acropora alive", "29": "sponge", "30": "anemone", "31": "pocillopora alive", "32": "table acropora dead", "33": "meandering bleached", "34": "stylophora alive", "35": "sea urchin", "36": "meandering alive", "37": "meandering dead", "38": "crown of thorn", "39": "dead clam"}
87
+ label2color = {"human": [255, 0, 0], "background": [29, 162, 216], "fish": [255, 255, 0], "sand": [194, 178, 128], "rubble": [161, 153, 128], "unknown hard substrate": [125, 125, 125], "algae covered substrate": [125, 163, 125], "dark": [31, 31, 31], "branching bleached": [252, 231, 240], "branching dead": [123, 50, 86], "branching alive": [226, 91, 157], "stylophora alive": [255, 111, 194], "pocillopora alive": [255, 146, 150], "acropora alive": [236, 128, 255], "table acropora alive": [189, 119, 255], "table acropora dead": [85, 53, 116], "millepora": [244, 150, 115], "turbinaria": [228, 255, 119], "other coral bleached": [250, 224, 225], "other coral dead": [114, 60, 61], "other coral alive": [224, 118, 119], "massive/meandering alive": [236, 150, 21], "massive/meandering dead": [134, 86, 18], "massive/meandering bleached": [255, 248, 228], "meandering alive": [230, 193, 0], "meandering dead": [119, 100, 14], "meandering bleached": [251, 243, 216], "transect line": [0, 255, 0], "transect tools": [8, 205, 12], "sea urchin": [0, 142, 255], "sea cucumber": [0, 231, 255], "anemone": [0, 255, 189], "sponge": [240, 80, 80], "clam": [189, 255, 234], "other animal": [0, 255, 255], "trash": [255, 0, 134], "seagrass": [125, 222, 125], "crown of thorn": [179, 245, 234], "dead clam": [89, 155, 134]}
88
+ label2colorhex = {k:'#%02x%02x%02x' % tuple(v) for k,v in label2color.items()}
89
+ print(label2colorhex)
90
+
91
+ with gr.Blocks(title="Coral Segmentation with SegFormer") as demo:
92
+ gr.Markdown("""<h1><center>Coral Segmentation with SegFormer</center></h1>""")
93
+ with gr.Row():
94
+ img_input = gr.Image(type="pil", label="Input image")
95
+ img_output = gr.AnnotatedImage(label="Predictions", color_map=label2colorhex)
96
+
97
+ section_btn = gr.Button("Segment Image")
98
+ section_btn.click(partial(segment_image, preprocessor=preprocessor, model=model), img_input, img_output)
99
+
100
+ example_files = os.listdir('assets/examples')
101
+ example_files.sort()
102
+ print(example_files)
103
+ example_files = [os.path.join('assets/examples', filename) for filename in example_files]
104
+
105
+ gr.Examples(examples=example_files, inputs=img_input, outputs=img_output)
106
+
107
+ demo.launch()