import tensorflow as tf from tensorflow.keras import layers, models from tensorflow.keras.applications import InceptionV3 def create_model(): base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(150, 150, 3)) base_model.trainable = False # Freezing the base model layers model = models.Sequential([ base_model, layers.GlobalAveragePooling2D(), layers.Dense(512, activation='relu'), layers.Dropout(0.5), layers.Dense(1, activation='sigmoid') ]) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), loss='binary_crossentropy', metrics=['accuracy']) return model