|
import tensorflow as tf |
|
from tensorflow.keras import layers, models |
|
from tensorflow.keras.applications import InceptionV3 |
|
|
|
def create_model(): |
|
base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(150, 150, 3)) |
|
base_model.trainable = False |
|
|
|
model = models.Sequential([ |
|
base_model, |
|
layers.GlobalAveragePooling2D(), |
|
layers.Dense(512, activation='relu'), |
|
layers.Dropout(0.5), |
|
layers.Dense(1, activation='sigmoid') |
|
]) |
|
|
|
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), |
|
loss='binary_crossentropy', |
|
metrics=['accuracy']) |
|
return model |
|
|