# app.py import os import re import io import torch from typing import List, Optional from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification from PIL import Image, ImageEnhance, ImageOps import torchvision.transforms as T import gradio as gr from fastapi import Request from starlette.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware # ========== LOAD MODELS (once) ========== print("Loading VinTern model...") vintern_model = AutoModel.from_pretrained( "5CD-AI/Vintern-1B-v3_5", trust_remote_code=True, torch_dtype="auto", device_map="auto", low_cpu_mem_usage=True ).eval() vintern_tokenizer = AutoTokenizer.from_pretrained( "5CD-AI/Vintern-1B-v3_5", trust_remote_code=True ) print("VinTern loaded!") print("Loading PhoBERT model...") phobert_path = "DuyKien016/phobert-scam-detector" phobert_tokenizer = AutoTokenizer.from_pretrained(phobert_path, use_fast=False) phobert_model = AutoModelForSequenceClassification.from_pretrained(phobert_path).eval() phobert_model = phobert_model.to("cuda" if torch.cuda.is_available() else "cpu") print("PhoBERT loaded!") # ========== UTILS ========== def process_image_pil(pil_img: Image.Image): img = pil_img.convert("RGB") img = ImageEnhance.Contrast(img).enhance(1.8) img = ImageEnhance.Sharpness(img).enhance(1.3) max_size = (448, 448) img.thumbnail(max_size, Image.Resampling.LANCZOS) img = ImageOps.pad(img, max_size, color=(245, 245, 245)) transform = T.Compose([ T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) pixel_values = transform(img).unsqueeze(0).to(vintern_model.device) return pixel_values def extract_messages(pixel_values) -> List[str]: prompt = """ Đọc từng tin nhắn trong ảnh và xuất ra định dạng: Tin nhắn 1: [nội dung] Tin nhắn 2: [nội dung] Tin nhắn 3: [nội dung] Quy tắc: - Mỗi ô chat = 1 tin nhắn - Chỉ lấy nội dung văn bản - Bỏ thời gian, tên người, emoji - Đọc từ trên xuống dưới Bắt đầu:""" response, *_ = vintern_model.chat( tokenizer=vintern_tokenizer, pixel_values=pixel_values, question=prompt, generation_config=dict(max_new_tokens=1024, do_sample=False, num_beams=1, early_stopping=True), history=None, return_history=True ) messages = re.findall(r"Tin nhắn \d+: (.+?)(?=\nTin nhắn|\Z)", response, re.S) def quick_clean(msg): msg = re.sub(r"\s+", " ", msg.strip()) msg = re.sub(r'^\d+[\.\)\-\s]+', '', msg) return msg.strip() return [quick_clean(msg) for msg in messages if msg.strip()] def predict_phobert(texts: List[str]): results = [] for text in texts: encoded = phobert_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256) encoded = {k: v.to(phobert_model.device) for k, v in encoded.items()} with torch.no_grad(): logits = phobert_model(**encoded).logits probs = torch.softmax(logits, dim=1).squeeze() label = torch.argmax(probs).item() results.append({ "text": text, "prediction": "LỪA ĐẢO" if label == 1 else "BÌNH THƯỜNG", "confidence": f"{probs[label]*100:.2f}%" }) return results # ========== CORE HANDLER ========== def handle_inference(text: Optional[str], pil_image: Optional[Image.Image]): if (not text) and (pil_image is None): return {"error": "No valid input provided"}, 400 if pil_image is not None: pixel_values = process_image_pil(pil_image) messages = extract_messages(pixel_values) phobert_results = predict_phobert(messages) return {"messages": phobert_results}, 200 # text only texts = [text] if isinstance(text, str) else text if isinstance(texts, list): phobert_results = predict_phobert(texts) return {"messages": phobert_results}, 200 return {"error": "Invalid input format"}, 400 # ========== GRADIO APP (UI + API) ========== demo = gr.Blocks() with demo: gr.Markdown("## dunkingscam backend (HF Space) — test nhanh") with gr.Row(): txt = gr.Textbox(label="Text (tùy chọn)") img = gr.Image(label="Ảnh chat (tùy chọn)", type="pil") out = gr.JSON(label="Kết quả") def ui_process(text, image): data, _ = handle_inference(text, image) return data btn = gr.Button("Process") btn.click(fn=ui_process, inputs=[txt, img], outputs=out) # Lấy FastAPI app bên trong Gradio để thêm CORS + custom route app = demo.server_app app.add_middleware( CORSMiddleware, allow_origins=["*"], # cần mở cho Replit allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Custom REST endpoint /process (FormData hoặc JSON) @demo.add_server_route("/process", methods=["POST"]) async def process_endpoint(request: Request): try: ct = request.headers.get("content-type", "") if "multipart/form-data" in ct: form = await request.form() text = form.get("text") file = form.get("image") # UploadFile hoặc None pil_image = None if file is not None: # đọc bytes -> PIL content = await file.read() pil_image = Image.open(io.BytesIO(content)) data, status = handle_inference(text, pil_image) elif "application/json" in ct: payload = await request.json() text = payload.get("text") data, status = handle_inference(text, None) else: data, status = {"error": "Unsupported Content-Type"}, 400 return JSONResponse( content=data, status_code=status, headers={"Access-Control-Allow-Origin": "*"} ) except Exception as e: return JSONResponse( content={"error": f"Server error: {str(e)}"}, status_code=500, headers={"Access-Control-Allow-Origin": "*"} )