Spaces:
Configuration error
Configuration error
File size: 22,946 Bytes
fa67d6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import streamlit as st
import nltk
import spacy
import pandas as pd
import base64, random
import time, datetime
from pyresparser import ResumeParser
from pdfminer3.layout import LAParams, LTTextBox
from pdfminer3.pdfpage import PDFPage
from pdfminer3.pdfinterp import PDFResourceManager
from pdfminer3.pdfinterp import PDFPageInterpreter
from pdfminer3.converter import TextConverter
import io, random
from streamlit_tags import st_tags
from PIL import Image
import pymysql
from Courses import ds_course, web_course, android_course, ios_course, uiux_course, resume_videos, interview_videos
import pafy
import plotly.express as px
import youtube_dl
nltk.download('punkt')
nltk.download('stopwords')
spacy.load('en_core_web_sm')
def fetch_yt_video(link):
video = pafy.new(link)
return video.title
def get_table_download_link(df, filename, text):
"""Generates a link allowing the data in a given panda dataframe to be downloaded
in: dataframe
out: href string
"""
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # some strings <-> bytes conversions necessary here
# href = f'<a href="data:file/csv;base64,{b64}">Download Report</a>'
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}">{text}</a>'
return href
def pdf_reader(file):
resource_manager = PDFResourceManager()
fake_file_handle = io.StringIO()
converter = TextConverter(resource_manager, fake_file_handle, laparams=LAParams())
page_interpreter = PDFPageInterpreter(resource_manager, converter)
with open(file, 'rb') as fh:
for page in PDFPage.get_pages(fh,
caching=True,
check_extractable=True):
page_interpreter.process_page(page)
print(page)
text = fake_file_handle.getvalue()
# close open handles
converter.close()
fake_file_handle.close()
return text
def show_pdf(file_path):
with open(file_path, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
# pdf_display = f'<embed src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf">'
pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf"></iframe>'
st.markdown(pdf_display, unsafe_allow_html=True)
def course_recommender(course_list):
st.subheader("**Courses & Certificates🎓 Recommendations**")
c = 0
rec_course = []
no_of_reco = st.slider('Choose Number of Course Recommendations:', 1, 10, 4)
random.shuffle(course_list)
for c_name, c_link in course_list:
c += 1
st.markdown(f"({c}) [{c_name}]({c_link})")
rec_course.append(c_name)
if c == no_of_reco:
break
return rec_course
connection = pymysql.connect(host='localhost', user='root', password='')
cursor = connection.cursor()
def insert_data(name, email, res_score, timestamp, no_of_pages, reco_field, cand_level, skills, recommended_skills,
courses):
DB_table_name = 'user_data'
insert_sql = "insert into " + DB_table_name + """
values (0,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"""
rec_values = (
name, email, str(res_score), timestamp, str(no_of_pages), reco_field, cand_level, skills, recommended_skills,
courses)
cursor.execute(insert_sql, rec_values)
connection.commit()
st.set_page_config(
page_title="Smart Resume Analyzer",
page_icon='./Logo/SRA_Logo.ico',
)
def run():
st.title("Smart Resume Analyser")
st.sidebar.markdown("# Choose User")
activities = ["Normal User", "Admin"]
choice = st.sidebar.selectbox("Choose among the given options:", activities)
# link = '[©Developed by Spidy20](http://github.com/spidy20)'
# st.sidebar.markdown(link, unsafe_allow_html=True)
img = Image.open('./Logo/SRA_Logo.jpg')
img = img.resize((250, 250))
st.image(img)
# Create the DB
db_sql = """CREATE DATABASE IF NOT EXISTS SRA;"""
cursor.execute(db_sql)
connection.select_db("sra")
# Create table
DB_table_name = 'user_data'
table_sql = "CREATE TABLE IF NOT EXISTS " + DB_table_name + """
(ID INT NOT NULL AUTO_INCREMENT,
Name varchar(100) NOT NULL,
Email_ID VARCHAR(50) NOT NULL,
resume_score VARCHAR(8) NOT NULL,
Timestamp VARCHAR(50) NOT NULL,
Page_no VARCHAR(5) NOT NULL,
Predicted_Field VARCHAR(25) NOT NULL,
User_level VARCHAR(30) NOT NULL,
Actual_skills VARCHAR(300) NOT NULL,
Recommended_skills VARCHAR(300) NOT NULL,
Recommended_courses VARCHAR(600) NOT NULL,
PRIMARY KEY (ID));
"""
cursor.execute(table_sql)
if choice == 'Normal User':
# st.markdown('''<h4 style='text-align: left; color: #d73b5c;'>* Upload your resume, and get smart recommendation based on it."</h4>''',
# unsafe_allow_html=True)
pdf_file = st.file_uploader("Choose your Resume", type=["pdf"])
if pdf_file is not None:
# with st.spinner('Uploading your Resume....'):
# time.sleep(4)
save_image_path = './Uploaded_Resumes/' + pdf_file.name
with open(save_image_path, "wb") as f:
f.write(pdf_file.getbuffer())
show_pdf(save_image_path)
resume_data = ResumeParser(save_image_path).get_extracted_data()
if resume_data:
## Get the whole resume data
resume_text = pdf_reader(save_image_path)
st.header("**Resume Analysis**")
st.success("Hello " + resume_data['name'])
st.subheader("**Your Basic info**")
try:
st.text('Name: ' + resume_data['name'])
st.text('Email: ' + resume_data['email'])
st.text('Contact: ' + resume_data['mobile_number'])
st.text('Resume pages: ' + str(resume_data['no_of_pages']))
except:
pass
cand_level = ''
if resume_data['no_of_pages'] == 1:
cand_level = "Fresher"
st.markdown('''<h4 style='text-align: left; color: #d73b5c;'>You are looking Fresher.</h4>''',
unsafe_allow_html=True)
elif resume_data['no_of_pages'] == 2:
cand_level = "Intermediate"
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>You are at intermediate level!</h4>''',
unsafe_allow_html=True)
elif resume_data['no_of_pages'] >= 3:
cand_level = "Experienced"
st.markdown('''<h4 style='text-align: left; color: #fba171;'>You are at experience level!''',
unsafe_allow_html=True)
st.subheader("**Skills Recommendation💡**")
## Skill shows
keywords = st_tags(label='### Skills that you have',
text='See our skills recommendation',
value=resume_data['skills'], key='1')
## recommendation
ds_keyword = ['tensorflow', 'keras', 'pytorch', 'machine learning', 'deep Learning', 'flask',
'streamlit']
web_keyword = ['react', 'django', 'node jS', 'react js', 'php', 'laravel', 'magento', 'wordpress',
'javascript', 'angular js', 'c#', 'flask']
android_keyword = ['android', 'android development', 'flutter', 'kotlin', 'xml', 'kivy']
ios_keyword = ['ios', 'ios development', 'swift', 'cocoa', 'cocoa touch', 'xcode']
uiux_keyword = ['ux', 'adobe xd', 'figma', 'zeplin', 'balsamiq', 'ui', 'prototyping', 'wireframes',
'storyframes', 'adobe photoshop', 'photoshop', 'editing', 'adobe illustrator',
'illustrator', 'adobe after effects', 'after effects', 'adobe premier pro',
'premier pro', 'adobe indesign', 'indesign', 'wireframe', 'solid', 'grasp',
'user research', 'user experience']
recommended_skills = []
reco_field = ''
rec_course = ''
## Courses recommendation
for i in resume_data['skills']:
## Data science recommendation
if i.lower() in ds_keyword:
print(i.lower())
reco_field = 'Data Science'
st.success("** Our analysis says you are looking for Data Science Jobs.**")
recommended_skills = ['Data Visualization', 'Predictive Analysis', 'Statistical Modeling',
'Data Mining', 'Clustering & Classification', 'Data Analytics',
'Quantitative Analysis', 'Web Scraping', 'ML Algorithms', 'Keras',
'Pytorch', 'Probability', 'Scikit-learn', 'Tensorflow', "Flask",
'Streamlit']
recommended_keywords = st_tags(label='### Recommended skills for you.',
text='Recommended skills generated from System',
value=recommended_skills, key='2')
st.markdown(
'''<h4 style='text-align: left; color: #1ed760;'>Adding this skills to resume will boost🚀 the chances of getting a Job💼</h4>''',
unsafe_allow_html=True)
rec_course = course_recommender(ds_course)
break
## Web development recommendation
elif i.lower() in web_keyword:
print(i.lower())
reco_field = 'Web Development'
st.success("** Our analysis says you are looking for Web Development Jobs **")
recommended_skills = ['React', 'Django', 'Node JS', 'React JS', 'php', 'laravel', 'Magento',
'wordpress', 'Javascript', 'Angular JS', 'c#', 'Flask', 'SDK']
recommended_keywords = st_tags(label='### Recommended skills for you.',
text='Recommended skills generated from System',
value=recommended_skills, key='3')
st.markdown(
'''<h4 style='text-align: left; color: #1ed760;'>Adding this skills to resume will boost🚀 the chances of getting a Job💼</h4>''',
unsafe_allow_html=True)
rec_course = course_recommender(web_course)
break
## Android App Development
elif i.lower() in android_keyword:
print(i.lower())
reco_field = 'Android Development'
st.success("** Our analysis says you are looking for Android App Development Jobs **")
recommended_skills = ['Android', 'Android development', 'Flutter', 'Kotlin', 'XML', 'Java',
'Kivy', 'GIT', 'SDK', 'SQLite']
recommended_keywords = st_tags(label='### Recommended skills for you.',
text='Recommended skills generated from System',
value=recommended_skills, key='4')
st.markdown(
'''<h4 style='text-align: left; color: #1ed760;'>Adding this skills to resume will boost🚀 the chances of getting a Job💼</h4>''',
unsafe_allow_html=True)
rec_course = course_recommender(android_course)
break
## IOS App Development
elif i.lower() in ios_keyword:
print(i.lower())
reco_field = 'IOS Development'
st.success("** Our analysis says you are looking for IOS App Development Jobs **")
recommended_skills = ['IOS', 'IOS Development', 'Swift', 'Cocoa', 'Cocoa Touch', 'Xcode',
'Objective-C', 'SQLite', 'Plist', 'StoreKit', "UI-Kit", 'AV Foundation',
'Auto-Layout']
recommended_keywords = st_tags(label='### Recommended skills for you.',
text='Recommended skills generated from System',
value=recommended_skills, key='5')
st.markdown(
'''<h4 style='text-align: left; color: #1ed760;'>Adding this skills to resume will boost🚀 the chances of getting a Job💼</h4>''',
unsafe_allow_html=True)
rec_course = course_recommender(ios_course)
break
## Ui-UX Recommendation
elif i.lower() in uiux_keyword:
print(i.lower())
reco_field = 'UI-UX Development'
st.success("** Our analysis says you are looking for UI-UX Development Jobs **")
recommended_skills = ['UI', 'User Experience', 'Adobe XD', 'Figma', 'Zeplin', 'Balsamiq',
'Prototyping', 'Wireframes', 'Storyframes', 'Adobe Photoshop', 'Editing',
'Illustrator', 'After Effects', 'Premier Pro', 'Indesign', 'Wireframe',
'Solid', 'Grasp', 'User Research']
recommended_keywords = st_tags(label='### Recommended skills for you.',
text='Recommended skills generated from System',
value=recommended_skills, key='6')
st.markdown(
'''<h4 style='text-align: left; color: #1ed760;'>Adding this skills to resume will boost🚀 the chances of getting a Job💼</h4>''',
unsafe_allow_html=True)
rec_course = course_recommender(uiux_course)
break
#
## Insert into table
ts = time.time()
cur_date = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d')
cur_time = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S')
timestamp = str(cur_date + '_' + cur_time)
### Resume writing recommendation
st.subheader("**Resume Tips & Ideas💡**")
resume_score = 0
if 'Objective' in resume_text:
resume_score = resume_score + 20
st.markdown(
'''<h4 style='text-align: left; color: #1ed760;'>[+] Awesome! You have added Objective</h4>''',
unsafe_allow_html=True)
else:
st.markdown(
'''<h4 style='text-align: left; color: #fabc10;'>[-] According to our recommendation please add your career objective, it will give your career intension to the Recruiters.</h4>''',
unsafe_allow_html=True)
if 'Declaration' in resume_text:
resume_score = resume_score + 20
st.markdown(
'''<h4 style='text-align: left; color: #1ed760;'>[+] Awesome! You have added Delcaration✍/h4>''',
unsafe_allow_html=True)
else:
st.markdown(
'''<h4 style='text-align: left; color: #fabc10;'>[-] According to our recommendation please add Declaration✍. It will give the assurance that everything written on your resume is true and fully acknowledged by you</h4>''',
unsafe_allow_html=True)
if 'Hobbies' or 'Interests' in resume_text:
resume_score = resume_score + 20
st.markdown(
'''<h4 style='text-align: left; color: #1ed760;'>[+] Awesome! You have added your Hobbies⚽</h4>''',
unsafe_allow_html=True)
else:
st.markdown(
'''<h4 style='text-align: left; color: #fabc10;'>[-] According to our recommendation please add Hobbies⚽. It will show your persnality to the Recruiters and give the assurance that you are fit for this role or not.</h4>''',
unsafe_allow_html=True)
if 'Achievements' in resume_text:
resume_score = resume_score + 20
st.markdown(
'''<h4 style='text-align: left; color: #1ed760;'>[+] Awesome! You have added your Achievements🏅 </h4>''',
unsafe_allow_html=True)
else:
st.markdown(
'''<h4 style='text-align: left; color: #fabc10;'>[-] According to our recommendation please add Achievements🏅. It will show that you are capable for the required position.</h4>''',
unsafe_allow_html=True)
if 'Projects' in resume_text:
resume_score = resume_score + 20
st.markdown(
'''<h4 style='text-align: left; color: #1ed760;'>[+] Awesome! You have added your Projects👨💻 </h4>''',
unsafe_allow_html=True)
else:
st.markdown(
'''<h4 style='text-align: left; color: #fabc10;'>[-] According to our recommendation please add Projects👨💻. It will show that you have done work related the required position or not.</h4>''',
unsafe_allow_html=True)
st.subheader("**Resume Score📝**")
st.markdown(
"""
<style>
.stProgress > div > div > div > div {
background-color: #d73b5c;
}
</style>""",
unsafe_allow_html=True,
)
my_bar = st.progress(0)
score = 0
for percent_complete in range(resume_score):
score += 1
time.sleep(0.1)
my_bar.progress(percent_complete + 1)
st.success('** Your Resume Writing Score: ' + str(score) + '**')
st.warning(
"** Note: This score is calculated based on the content that you have added in your Resume. **")
st.balloons()
insert_data(resume_data['name'], resume_data['email'], str(resume_score), timestamp,
str(resume_data['no_of_pages']), reco_field, cand_level, str(resume_data['skills']),
str(recommended_skills), str(rec_course))
## Resume writing video
st.header("**Bonus Video for Resume Writing Tips💡**")
resume_vid = random.choice(resume_videos)
res_vid_title = fetch_yt_video(resume_vid)
st.subheader("✅ **" + res_vid_title + "**")
st.video(resume_vid)
## Interview Preparation Video
st.header("**Bonus Video for Interview👨💼 Tips💡**")
interview_vid = random.choice(interview_videos)
int_vid_title = fetch_yt_video(interview_vid)
st.subheader("✅ **" + int_vid_title + "**")
st.video(interview_vid)
connection.commit()
else:
st.error('Something went wrong..')
else:
## Admin Side
st.success('Welcome to Admin Side')
# st.sidebar.subheader('**ID / Password Required!**')
ad_user = st.text_input("Username")
ad_password = st.text_input("Password", type='password')
if st.button('Login'):
if ad_user == 'machine_learning_hub' and ad_password == 'mlhub123':
st.success("Welcome Kushal")
# Display Data
cursor.execute('''SELECT*FROM user_data''')
data = cursor.fetchall()
st.header("**User's👨💻 Data**")
df = pd.DataFrame(data, columns=['ID', 'Name', 'Email', 'Resume Score', 'Timestamp', 'Total Page',
'Predicted Field', 'User Level', 'Actual Skills', 'Recommended Skills',
'Recommended Course'])
st.dataframe(df)
st.markdown(get_table_download_link(df, 'User_Data.csv', 'Download Report'), unsafe_allow_html=True)
## Admin Side Data
query = 'select * from user_data;'
plot_data = pd.read_sql(query, connection)
## Pie chart for predicted field recommendations
labels = plot_data.Predicted_Field.unique()
print(labels)
values = plot_data.Predicted_Field.value_counts()
print(values)
st.subheader("📈 **Pie-Chart for Predicted Field Recommendations**")
fig = px.pie(df, values=values, names=labels, title='Predicted Field according to the Skills')
st.plotly_chart(fig)
### Pie chart for User's👨💻 Experienced Level
labels = plot_data.User_level.unique()
values = plot_data.User_level.value_counts()
st.subheader("📈 ** Pie-Chart for User's👨💻 Experienced Level**")
fig = px.pie(df, values=values, names=labels, title="Pie-Chart📈 for User's👨💻 Experienced Level")
st.plotly_chart(fig)
else:
st.error("Wrong ID & Password Provided")
run()
|